//! Integer and floating-point number formatting use crate::fmt; use crate::mem::MaybeUninit; use crate::num::fmt as numfmt; use crate::ops::{Div, Rem, Sub}; use crate::ptr; use crate::slice; use crate::str; #[doc(hidden)] trait DisplayInt: PartialEq + PartialOrd + Div + Rem + Sub + Copy { fn zero() -> Self; fn from_u8(u: u8) -> Self; fn to_u8(&self) -> u8; fn to_u16(&self) -> u16; fn to_u32(&self) -> u32; fn to_u64(&self) -> u64; fn to_u128(&self) -> u128; } macro_rules! impl_int { ($($t:ident)*) => ( $(impl DisplayInt for $t { fn zero() -> Self { 0 } fn from_u8(u: u8) -> Self { u as Self } fn to_u8(&self) -> u8 { *self as u8 } fn to_u16(&self) -> u16 { *self as u16 } fn to_u32(&self) -> u32 { *self as u32 } fn to_u64(&self) -> u64 { *self as u64 } fn to_u128(&self) -> u128 { *self as u128 } })* ) } macro_rules! impl_uint { ($($t:ident)*) => ( $(impl DisplayInt for $t { fn zero() -> Self { 0 } fn from_u8(u: u8) -> Self { u as Self } fn to_u8(&self) -> u8 { *self as u8 } fn to_u16(&self) -> u16 { *self as u16 } fn to_u32(&self) -> u32 { *self as u32 } fn to_u64(&self) -> u64 { *self as u64 } fn to_u128(&self) -> u128 { *self as u128 } })* ) } impl_int! { i8 i16 i32 i64 i128 isize } impl_uint! { u8 u16 u32 u64 u128 usize } /// A type that represents a specific radix #[doc(hidden)] trait GenericRadix: Sized { /// The number of digits. const BASE: u8; /// A radix-specific prefix string. const PREFIX: &'static str; /// Converts an integer to corresponding radix digit. fn digit(x: u8) -> u8; /// Format an integer using the radix using a formatter. fn fmt_int(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result { // The radix can be as low as 2, so we need a buffer of at least 128 // characters for a base 2 number. let zero = T::zero(); let is_nonnegative = x >= zero; let mut buf = [MaybeUninit::::uninit(); 128]; let mut curr = buf.len(); let base = T::from_u8(Self::BASE); if is_nonnegative { // Accumulate each digit of the number from the least significant // to the most significant figure. for byte in buf.iter_mut().rev() { let n = x % base; // Get the current place value. x = x / base; // Deaccumulate the number. byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer. curr -= 1; if x == zero { // No more digits left to accumulate. break; }; } } else { // Do the same as above, but accounting for two's complement. for byte in buf.iter_mut().rev() { let n = zero - (x % base); // Get the current place value. x = x / base; // Deaccumulate the number. byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer. curr -= 1; if x == zero { // No more digits left to accumulate. break; }; } } let buf = &buf[curr..]; // SAFETY: The only chars in `buf` are created by `Self::digit` which are assumed to be // valid UTF-8 let buf = unsafe { str::from_utf8_unchecked(slice::from_raw_parts( MaybeUninit::slice_as_ptr(buf), buf.len(), )) }; f.pad_integral(is_nonnegative, Self::PREFIX, buf) } } /// A binary (base 2) radix #[derive(Clone, PartialEq)] struct Binary; /// An octal (base 8) radix #[derive(Clone, PartialEq)] struct Octal; /// A hexadecimal (base 16) radix, formatted with lower-case characters #[derive(Clone, PartialEq)] struct LowerHex; /// A hexadecimal (base 16) radix, formatted with upper-case characters #[derive(Clone, PartialEq)] struct UpperHex; macro_rules! radix { ($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => { impl GenericRadix for $T { const BASE: u8 = $base; const PREFIX: &'static str = $prefix; fn digit(x: u8) -> u8 { match x { $($x => $conv,)+ x => panic!("number not in the range 0..={}: {}", Self::BASE - 1, x), } } } } } radix! { Binary, 2, "0b", x @ 0 ..= 1 => b'0' + x } radix! { Octal, 8, "0o", x @ 0 ..= 7 => b'0' + x } radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) } radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) } macro_rules! int_base { (fmt::$Trait:ident for $T:ident as $U:ident -> $Radix:ident) => { #[stable(feature = "rust1", since = "1.0.0")] impl fmt::$Trait for $T { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { $Radix.fmt_int(*self as $U, f) } } }; } macro_rules! integer { ($Int:ident, $Uint:ident) => { int_base! { fmt::Binary for $Int as $Uint -> Binary } int_base! { fmt::Octal for $Int as $Uint -> Octal } int_base! { fmt::LowerHex for $Int as $Uint -> LowerHex } int_base! { fmt::UpperHex for $Int as $Uint -> UpperHex } int_base! { fmt::Binary for $Uint as $Uint -> Binary } int_base! { fmt::Octal for $Uint as $Uint -> Octal } int_base! { fmt::LowerHex for $Uint as $Uint -> LowerHex } int_base! { fmt::UpperHex for $Uint as $Uint -> UpperHex } }; } integer! { isize, usize } integer! { i8, u8 } integer! { i16, u16 } integer! { i32, u32 } integer! { i64, u64 } integer! { i128, u128 } macro_rules! debug { ($($T:ident)*) => {$( #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for $T { #[inline] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if f.debug_lower_hex() { fmt::LowerHex::fmt(self, f) } else if f.debug_upper_hex() { fmt::UpperHex::fmt(self, f) } else { fmt::Display::fmt(self, f) } } } )*}; } debug! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize } // 2 digit decimal look up table static DEC_DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\ 2021222324252627282930313233343536373839\ 4041424344454647484950515253545556575859\ 6061626364656667686970717273747576777879\ 8081828384858687888990919293949596979899"; macro_rules! impl_Display { ($($t:ident),* as $u:ident via $conv_fn:ident named $name:ident) => { fn $name(mut n: $u, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { // 2^128 is about 3*10^38, so 39 gives an extra byte of space let mut buf = [MaybeUninit::::uninit(); 39]; let mut curr = buf.len() as isize; let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); let lut_ptr = DEC_DIGITS_LUT.as_ptr(); // SAFETY: Since `d1` and `d2` are always less than or equal to `198`, we // can copy from `lut_ptr[d1..d1 + 1]` and `lut_ptr[d2..d2 + 1]`. To show // that it's OK to copy into `buf_ptr`, notice that at the beginning // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at // each step this is kept the same as `n` is divided. Since `n` is always // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]` // is safe to access. unsafe { // need at least 16 bits for the 4-characters-at-a-time to work. assert!(crate::mem::size_of::<$u>() >= 2); // eagerly decode 4 characters at a time while n >= 10000 { let rem = (n % 10000) as isize; n /= 10000; let d1 = (rem / 100) << 1; let d2 = (rem % 100) << 1; curr -= 4; // We are allowed to copy to `buf_ptr[curr..curr + 3]` here since // otherwise `curr < 0`. But then `n` was originally at least `10000^10` // which is `10^40 > 2^128 > n`. ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2); } // if we reach here numbers are <= 9999, so at most 4 chars long let mut n = n as isize; // possibly reduce 64bit math // decode 2 more chars, if > 2 chars if n >= 100 { let d1 = (n % 100) << 1; n /= 100; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } // decode last 1 or 2 chars if n < 10 { curr -= 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; } else { let d1 = n << 1; curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } } // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid // UTF-8 since `DEC_DIGITS_LUT` is let buf_slice = unsafe { str::from_utf8_unchecked( slice::from_raw_parts(buf_ptr.offset(curr), buf.len() - curr as usize)) }; f.pad_integral(is_nonnegative, "", buf_slice) } $(#[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for $t { #[allow(unused_comparisons)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let is_nonnegative = *self >= 0; let n = if is_nonnegative { self.$conv_fn() } else { // convert the negative num to positive by summing 1 to it's 2 complement (!self.$conv_fn()).wrapping_add(1) }; $name(n, is_nonnegative, f) } })* }; } macro_rules! impl_Exp { ($($t:ident),* as $u:ident via $conv_fn:ident named $name:ident) => { fn $name( mut n: $u, is_nonnegative: bool, upper: bool, f: &mut fmt::Formatter<'_> ) -> fmt::Result { let (mut n, mut exponent, trailing_zeros, added_precision) = { let mut exponent = 0; // count and remove trailing decimal zeroes while n % 10 == 0 && n >= 10 { n /= 10; exponent += 1; } let (added_precision, subtracted_precision) = match f.precision() { Some(fmt_prec) => { // number of decimal digits minus 1 let mut tmp = n; let mut prec = 0; while tmp >= 10 { tmp /= 10; prec += 1; } (fmt_prec.saturating_sub(prec), prec.saturating_sub(fmt_prec)) } None => (0, 0) }; for _ in 1..subtracted_precision { n /= 10; exponent += 1; } if subtracted_precision != 0 { let rem = n % 10; n /= 10; exponent += 1; // round up last digit if rem >= 5 { n += 1; } } (n, exponent, exponent, added_precision) }; // 39 digits (worst case u128) + . = 40 // Since `curr` always decreases by the number of digits copied, this means // that `curr >= 0`. let mut buf = [MaybeUninit::::uninit(); 40]; let mut curr = buf.len() as isize; //index for buf let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); let lut_ptr = DEC_DIGITS_LUT.as_ptr(); // decode 2 chars at a time while n >= 100 { let d1 = ((n % 100) as isize) << 1; curr -= 2; // SAFETY: `d1 <= 198`, so we can copy from `lut_ptr[d1..d1 + 2]` since // `DEC_DIGITS_LUT` has a length of 200. unsafe { ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2); } n /= 100; exponent += 2; } // n is <= 99, so at most 2 chars long let mut n = n as isize; // possibly reduce 64bit math // decode second-to-last character if n >= 10 { curr -= 1; // SAFETY: Safe since `40 > curr >= 0` (see comment) unsafe { *buf_ptr.offset(curr) = (n as u8 % 10_u8) + b'0'; } n /= 10; exponent += 1; } // add decimal point iff >1 mantissa digit will be printed if exponent != trailing_zeros || added_precision != 0 { curr -= 1; // SAFETY: Safe since `40 > curr >= 0` unsafe { *buf_ptr.offset(curr) = b'.'; } } // SAFETY: Safe since `40 > curr >= 0` let buf_slice = unsafe { // decode last character curr -= 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; let len = buf.len() - curr as usize; slice::from_raw_parts(buf_ptr.offset(curr), len) }; // stores 'e' (or 'E') and the up to 2-digit exponent let mut exp_buf = [MaybeUninit::::uninit(); 3]; let exp_ptr = MaybeUninit::slice_as_mut_ptr(&mut exp_buf); // SAFETY: In either case, `exp_buf` is written within bounds and `exp_ptr[..len]` // is contained within `exp_buf` since `len <= 3`. let exp_slice = unsafe { *exp_ptr.offset(0) = if upper { b'E' } else { b'e' }; let len = if exponent < 10 { *exp_ptr.offset(1) = (exponent as u8) + b'0'; 2 } else { let off = exponent << 1; ptr::copy_nonoverlapping(lut_ptr.offset(off), exp_ptr.offset(1), 2); 3 }; slice::from_raw_parts(exp_ptr, len) }; let parts = &[ numfmt::Part::Copy(buf_slice), numfmt::Part::Zero(added_precision), numfmt::Part::Copy(exp_slice) ]; let sign = if !is_nonnegative { "-" } else if f.sign_plus() { "+" } else { "" }; let formatted = numfmt::Formatted{sign, parts}; f.pad_formatted_parts(&formatted) } $( #[stable(feature = "integer_exp_format", since = "1.42.0")] impl fmt::LowerExp for $t { #[allow(unused_comparisons)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let is_nonnegative = *self >= 0; let n = if is_nonnegative { self.$conv_fn() } else { // convert the negative num to positive by summing 1 to it's 2 complement (!self.$conv_fn()).wrapping_add(1) }; $name(n, is_nonnegative, false, f) } })* $( #[stable(feature = "integer_exp_format", since = "1.42.0")] impl fmt::UpperExp for $t { #[allow(unused_comparisons)] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let is_nonnegative = *self >= 0; let n = if is_nonnegative { self.$conv_fn() } else { // convert the negative num to positive by summing 1 to it's 2 complement (!self.$conv_fn()).wrapping_add(1) }; $name(n, is_nonnegative, true, f) } })* }; } // Include wasm32 in here since it doesn't reflect the native pointer size, and // often cares strongly about getting a smaller code size. #[cfg(any(target_pointer_width = "64", target_arch = "wasm32"))] mod imp { use super::*; impl_Display!( i8, u8, i16, u16, i32, u32, i64, u64, usize, isize as u64 via to_u64 named fmt_u64 ); impl_Exp!( i8, u8, i16, u16, i32, u32, i64, u64, usize, isize as u64 via to_u64 named exp_u64 ); } #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))] mod imp { use super::*; impl_Display!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named fmt_u32); impl_Display!(i64, u64 as u64 via to_u64 named fmt_u64); impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named exp_u32); impl_Exp!(i64, u64 as u64 via to_u64 named exp_u64); } impl_Exp!(i128, u128 as u128 via to_u128 named exp_u128); /// Helper function for writing a u64 into `buf` going from last to first, with `curr`. fn parse_u64_into(mut n: u64, buf: &mut [MaybeUninit; N], curr: &mut isize) { let buf_ptr = MaybeUninit::slice_as_mut_ptr(buf); let lut_ptr = DEC_DIGITS_LUT.as_ptr(); assert!(*curr > 19); // SAFETY: // Writes at most 19 characters into the buffer. Guaranteed that any ptr into LUT is at most // 198, so will never OOB. There is a check above that there are at least 19 characters // remaining. unsafe { if n >= 1e16 as u64 { let to_parse = n % 1e16 as u64; n /= 1e16 as u64; // Some of these are nops but it looks more elegant this way. let d1 = ((to_parse / 1e14 as u64) % 100) << 1; let d2 = ((to_parse / 1e12 as u64) % 100) << 1; let d3 = ((to_parse / 1e10 as u64) % 100) << 1; let d4 = ((to_parse / 1e8 as u64) % 100) << 1; let d5 = ((to_parse / 1e6 as u64) % 100) << 1; let d6 = ((to_parse / 1e4 as u64) % 100) << 1; let d7 = ((to_parse / 1e2 as u64) % 100) << 1; let d8 = ((to_parse / 1e0 as u64) % 100) << 1; *curr -= 16; ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr + 0), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2 as isize), buf_ptr.offset(*curr + 2), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d3 as isize), buf_ptr.offset(*curr + 4), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d4 as isize), buf_ptr.offset(*curr + 6), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d5 as isize), buf_ptr.offset(*curr + 8), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d6 as isize), buf_ptr.offset(*curr + 10), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d7 as isize), buf_ptr.offset(*curr + 12), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d8 as isize), buf_ptr.offset(*curr + 14), 2); } if n >= 1e8 as u64 { let to_parse = n % 1e8 as u64; n /= 1e8 as u64; // Some of these are nops but it looks more elegant this way. let d1 = ((to_parse / 1e6 as u64) % 100) << 1; let d2 = ((to_parse / 1e4 as u64) % 100) << 1; let d3 = ((to_parse / 1e2 as u64) % 100) << 1; let d4 = ((to_parse / 1e0 as u64) % 100) << 1; *curr -= 8; ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr + 0), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2 as isize), buf_ptr.offset(*curr + 2), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d3 as isize), buf_ptr.offset(*curr + 4), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d4 as isize), buf_ptr.offset(*curr + 6), 2); } // `n` < 1e8 < (1 << 32) let mut n = n as u32; if n >= 1e4 as u32 { let to_parse = n % 1e4 as u32; n /= 1e4 as u32; let d1 = (to_parse / 100) << 1; let d2 = (to_parse % 100) << 1; *curr -= 4; ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr + 0), 2); ptr::copy_nonoverlapping(lut_ptr.offset(d2 as isize), buf_ptr.offset(*curr + 2), 2); } // `n` < 1e4 < (1 << 16) let mut n = n as u16; if n >= 100 { let d1 = (n % 100) << 1; n /= 100; *curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr), 2); } // decode last 1 or 2 chars if n < 10 { *curr -= 1; *buf_ptr.offset(*curr) = (n as u8) + b'0'; } else { let d1 = n << 1; *curr -= 2; ptr::copy_nonoverlapping(lut_ptr.offset(d1 as isize), buf_ptr.offset(*curr), 2); } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for u128 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt_u128(*self, true, f) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for i128 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let is_nonnegative = *self >= 0; let n = if is_nonnegative { self.to_u128() } else { // convert the negative num to positive by summing 1 to it's 2 complement (!self.to_u128()).wrapping_add(1) }; fmt_u128(n, is_nonnegative, f) } } /// Specialized optimization for u128. Instead of taking two items at a time, it splits /// into at most 2 u64s, and then chunks by 10e16, 10e8, 10e4, 10e2, and then 10e1. /// It also has to handle 1 last item, as 10^40 > 2^128 > 10^39, whereas /// 10^20 > 2^64 > 10^19. fn fmt_u128(n: u128, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result { // 2^128 is about 3*10^38, so 39 gives an extra byte of space let mut buf = [MaybeUninit::::uninit(); 39]; let mut curr = buf.len() as isize; let (n, rem) = udiv_1e19(n); parse_u64_into(rem, &mut buf, &mut curr); if n != 0 { // 0 pad up to point let target = (buf.len() - 19) as isize; // SAFETY: Guaranteed that we wrote at most 19 bytes, and there must be space // remaining since it has length 39 unsafe { ptr::write_bytes( MaybeUninit::slice_as_mut_ptr(&mut buf).offset(target), b'0', (curr - target) as usize, ); } curr = target; let (n, rem) = udiv_1e19(n); parse_u64_into(rem, &mut buf, &mut curr); // Should this following branch be annotated with unlikely? if n != 0 { let target = (buf.len() - 38) as isize; // The raw `buf_ptr` pointer is only valid until `buf` is used the next time, // buf `buf` is not used in this scope so we are good. let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf); // SAFETY: At this point we wrote at most 38 bytes, pad up to that point, // There can only be at most 1 digit remaining. unsafe { ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize); curr = target - 1; *buf_ptr.offset(curr) = (n as u8) + b'0'; } } } // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid // UTF-8 since `DEC_DIGITS_LUT` is let buf_slice = unsafe { str::from_utf8_unchecked(slice::from_raw_parts( MaybeUninit::slice_as_mut_ptr(&mut buf).offset(curr), buf.len() - curr as usize, )) }; f.pad_integral(is_nonnegative, "", buf_slice) } /// Partition of `n` into n > 1e19 and rem <= 1e19 /// /// Integer division algorithm is based on the following paper: /// /// T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication” /// in Proc. of the SIGPLAN94 Conference on Programming Language Design and /// Implementation, 1994, pp. 61–72 /// fn udiv_1e19(n: u128) -> (u128, u64) { const DIV: u64 = 1e19 as u64; const FACTOR: u128 = 156927543384667019095894735580191660403; let quot = if n < 1 << 83 { ((n >> 19) as u64 / (DIV >> 19)) as u128 } else { u128_mulhi(n, FACTOR) >> 62 }; let rem = (n - quot * DIV as u128) as u64; (quot, rem) } /// Multiply unsigned 128 bit integers, return upper 128 bits of the result #[inline] fn u128_mulhi(x: u128, y: u128) -> u128 { let x_lo = x as u64; let x_hi = (x >> 64) as u64; let y_lo = y as u64; let y_hi = (y >> 64) as u64; // handle possibility of overflow let carry = (x_lo as u128 * y_lo as u128) >> 64; let m = x_lo as u128 * y_hi as u128 + carry; let high1 = m >> 64; let m_lo = m as u64; let high2 = (x_hi as u128 * y_lo as u128 + m_lo as u128) >> 64; x_hi as u128 * y_hi as u128 + high1 + high2 }