// implements the unary operator "op &T" // based on "op T" where T is expected to be `Copy`able macro_rules! forward_ref_unop { (impl const $imp:ident, $method:ident for $t:ty) => { forward_ref_unop!(impl const $imp, $method for $t, #[stable(feature = "rust1", since = "1.0.0")]); }; // Equivalent to the non-const version, with the addition of `rustc_const_unstable` (impl const $imp:ident, $method:ident for $t:ty, #[$attr:meta]) => { #[$attr] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const $imp for &$t { type Output = <$t as $imp>::Output; #[inline] fn $method(self) -> <$t as $imp>::Output { $imp::$method(*self) } } }; (impl $imp:ident, $method:ident for $t:ty, #[$attr:meta]) => { #[$attr] impl $imp for &$t { type Output = <$t as $imp>::Output; #[inline] fn $method(self) -> <$t as $imp>::Output { $imp::$method(*self) } } } } // implements binary operators "&T op U", "T op &U", "&T op &U" // based on "T op U" where T and U are expected to be `Copy`able macro_rules! forward_ref_binop { (impl const $imp:ident, $method:ident for $t:ty, $u:ty) => { forward_ref_binop!(impl const $imp, $method for $t, $u, #[stable(feature = "rust1", since = "1.0.0")]); }; // Equivalent to the non-const version, with the addition of `rustc_const_unstable` (impl const $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => { #[$attr] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl<'a> const $imp<$u> for &'a $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: $u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, other) } } #[$attr] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const $imp<&$u> for $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output { $imp::$method(self, *other) } } #[$attr] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const $imp<&$u> for &$t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, *other) } } }; (impl $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => { #[$attr] impl<'a> $imp<$u> for &'a $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: $u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, other) } } #[$attr] impl $imp<&$u> for $t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output { $imp::$method(self, *other) } } #[$attr] impl $imp<&$u> for &$t { type Output = <$t as $imp<$u>>::Output; #[inline] fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output { $imp::$method(*self, *other) } } } } // implements "T op= &U", based on "T op= U" // where U is expected to be `Copy`able macro_rules! forward_ref_op_assign { (impl $imp:ident, $method:ident for $t:ty, $u:ty) => { forward_ref_op_assign!(impl $imp, $method for $t, $u, #[stable(feature = "op_assign_builtins_by_ref", since = "1.22.0")]); }; (impl const $imp:ident, $method:ident for $t:ty, $u:ty) => { forward_ref_op_assign!(impl const $imp, $method for $t, $u, #[stable(feature = "op_assign_builtins_by_ref", since = "1.22.0")]); }; // Equivalent to the non-const version, with the addition of `rustc_const_unstable` (impl const $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => { #[$attr] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const $imp<&$u> for $t { #[inline] fn $method(&mut self, other: &$u) { $imp::$method(self, *other); } } }; (impl $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => { #[$attr] impl $imp<&$u> for $t { #[inline] fn $method(&mut self, other: &$u) { $imp::$method(self, *other); } } } } /// Create a zero-size type similar to a closure type, but named. macro_rules! impl_fn_for_zst { ($( $( #[$attr: meta] )* struct $Name: ident impl$( <$( $lifetime : lifetime ),+> )? Fn = |$( $arg: ident: $ArgTy: ty ),*| -> $ReturnTy: ty $body: block; )+) => { $( $( #[$attr] )* struct $Name; impl $( <$( $lifetime ),+> )? Fn<($( $ArgTy, )*)> for $Name { #[inline] extern "rust-call" fn call(&self, ($( $arg, )*): ($( $ArgTy, )*)) -> $ReturnTy { $body } } impl $( <$( $lifetime ),+> )? FnMut<($( $ArgTy, )*)> for $Name { #[inline] extern "rust-call" fn call_mut( &mut self, ($( $arg, )*): ($( $ArgTy, )*) ) -> $ReturnTy { Fn::call(&*self, ($( $arg, )*)) } } impl $( <$( $lifetime ),+> )? FnOnce<($( $ArgTy, )*)> for $Name { type Output = $ReturnTy; #[inline] extern "rust-call" fn call_once(self, ($( $arg, )*): ($( $ArgTy, )*)) -> $ReturnTy { Fn::call(&self, ($( $arg, )*)) } } )+ } } /// A macro for defining `#[cfg]` if-else statements. /// /// `cfg_if` is similar to the `if/elif` C preprocessor macro by allowing definition of a cascade /// of `#[cfg]` cases, emitting the implementation which matches first. /// /// This allows you to conveniently provide a long list `#[cfg]`'d blocks of code without having to /// rewrite each clause multiple times. /// /// # Example /// /// ```ignore(cannot-test-this-because-non-exported-macro) /// cfg_if! { /// if #[cfg(unix)] { /// fn foo() { /* unix specific functionality */ } /// } else if #[cfg(target_pointer_width = "32")] { /// fn foo() { /* non-unix, 32-bit functionality */ } /// } else { /// fn foo() { /* fallback implementation */ } /// } /// } /// /// # fn main() {} /// ``` // This is a copy of `cfg_if!` from the `cfg_if` crate. // The recursive invocations should use $crate if this is ever exported. macro_rules! cfg_if { // match if/else chains with a final `else` ( $( if #[cfg( $i_meta:meta )] { $( $i_tokens:tt )* } ) else+ else { $( $e_tokens:tt )* } ) => { cfg_if! { @__items () ; $( (( $i_meta ) ( $( $i_tokens )* )) , )+ (() ( $( $e_tokens )* )) , } }; // Internal and recursive macro to emit all the items // // Collects all the previous cfgs in a list at the beginning, so they can be // negated. After the semicolon is all the remaining items. (@__items ( $( $_:meta , )* ) ; ) => {}; ( @__items ( $( $no:meta , )* ) ; (( $( $yes:meta )? ) ( $( $tokens:tt )* )) , $( $rest:tt , )* ) => { // Emit all items within one block, applying an appropriate #[cfg]. The // #[cfg] will require all `$yes` matchers specified and must also negate // all previous matchers. #[cfg(all( $( $yes , )? not(any( $( $no ),* )) ))] cfg_if! { @__identity $( $tokens )* } // Recurse to emit all other items in `$rest`, and when we do so add all // our `$yes` matchers to the list of `$no` matchers as future emissions // will have to negate everything we just matched as well. cfg_if! { @__items ( $( $no , )* $( $yes , )? ) ; $( $rest , )* } }; // Internal macro to make __apply work out right for different match types, // because of how macros match/expand stuff. (@__identity $( $tokens:tt )* ) => { $( $tokens )* }; }