use crate::convert::TryFrom; use crate::mem; use crate::ops::{self, Try}; use super::{ FusedIterator, TrustedLen, TrustedRandomAccess, TrustedRandomAccessNoCoerce, TrustedStep, }; // Safety: All invariants are upheld. macro_rules! unsafe_impl_trusted_step { ($($type:ty)*) => {$( #[unstable(feature = "trusted_step", issue = "85731")] unsafe impl TrustedStep for $type {} )*}; } unsafe_impl_trusted_step![char i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize]; /// Objects that have a notion of *successor* and *predecessor* operations. /// /// The *successor* operation moves towards values that compare greater. /// The *predecessor* operation moves towards values that compare lesser. #[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")] pub trait Step: Clone + PartialOrd + Sized { /// Returns the number of *successor* steps required to get from `start` to `end`. /// /// Returns `None` if the number of steps would overflow `usize` /// (or is infinite, or if `end` would never be reached). /// /// # Invariants /// /// For any `a`, `b`, and `n`: /// /// * `steps_between(&a, &b) == Some(n)` if and only if `Step::forward_checked(&a, n) == Some(b)` /// * `steps_between(&a, &b) == Some(n)` if and only if `Step::backward_checked(&b, n) == Some(a)` /// * `steps_between(&a, &b) == Some(n)` only if `a <= b` /// * Corollary: `steps_between(&a, &b) == Some(0)` if and only if `a == b` /// * Note that `a <= b` does _not_ imply `steps_between(&a, &b) != None`; /// this is the case when it would require more than `usize::MAX` steps to get to `b` /// * `steps_between(&a, &b) == None` if `a > b` fn steps_between(start: &Self, end: &Self) -> Option; /// Returns the value that would be obtained by taking the *successor* /// of `self` `count` times. /// /// If this would overflow the range of values supported by `Self`, returns `None`. /// /// # Invariants /// /// For any `a`, `n`, and `m`: /// /// * `Step::forward_checked(a, n).and_then(|x| Step::forward_checked(x, m)) == Step::forward_checked(a, m).and_then(|x| Step::forward_checked(x, n))` /// /// For any `a`, `n`, and `m` where `n + m` does not overflow: /// /// * `Step::forward_checked(a, n).and_then(|x| Step::forward_checked(x, m)) == Step::forward_checked(a, n + m)` /// /// For any `a` and `n`: /// /// * `Step::forward_checked(a, n) == (0..n).try_fold(a, |x, _| Step::forward_checked(&x, 1))` /// * Corollary: `Step::forward_checked(&a, 0) == Some(a)` fn forward_checked(start: Self, count: usize) -> Option; /// Returns the value that would be obtained by taking the *successor* /// of `self` `count` times. /// /// If this would overflow the range of values supported by `Self`, /// this function is allowed to panic, wrap, or saturate. /// The suggested behavior is to panic when debug assertions are enabled, /// and to wrap or saturate otherwise. /// /// Unsafe code should not rely on the correctness of behavior after overflow. /// /// # Invariants /// /// For any `a`, `n`, and `m`, where no overflow occurs: /// /// * `Step::forward(Step::forward(a, n), m) == Step::forward(a, n + m)` /// /// For any `a` and `n`, where no overflow occurs: /// /// * `Step::forward_checked(a, n) == Some(Step::forward(a, n))` /// * `Step::forward(a, n) == (0..n).fold(a, |x, _| Step::forward(x, 1))` /// * Corollary: `Step::forward(a, 0) == a` /// * `Step::forward(a, n) >= a` /// * `Step::backward(Step::forward(a, n), n) == a` fn forward(start: Self, count: usize) -> Self { Step::forward_checked(start, count).expect("overflow in `Step::forward`") } /// Returns the value that would be obtained by taking the *successor* /// of `self` `count` times. /// /// # Safety /// /// It is undefined behavior for this operation to overflow the /// range of values supported by `Self`. If you cannot guarantee that this /// will not overflow, use `forward` or `forward_checked` instead. /// /// # Invariants /// /// For any `a`: /// /// * if there exists `b` such that `b > a`, it is safe to call `Step::forward_unchecked(a, 1)` /// * if there exists `b`, `n` such that `steps_between(&a, &b) == Some(n)`, /// it is safe to call `Step::forward_unchecked(a, m)` for any `m <= n`. /// /// For any `a` and `n`, where no overflow occurs: /// /// * `Step::forward_unchecked(a, n)` is equivalent to `Step::forward(a, n)` unsafe fn forward_unchecked(start: Self, count: usize) -> Self { Step::forward(start, count) } /// Returns the value that would be obtained by taking the *predecessor* /// of `self` `count` times. /// /// If this would overflow the range of values supported by `Self`, returns `None`. /// /// # Invariants /// /// For any `a`, `n`, and `m`: /// /// * `Step::backward_checked(a, n).and_then(|x| Step::backward_checked(x, m)) == n.checked_add(m).and_then(|x| Step::backward_checked(a, x))` /// * `Step::backward_checked(a, n).and_then(|x| Step::backward_checked(x, m)) == try { Step::backward_checked(a, n.checked_add(m)?) }` /// /// For any `a` and `n`: /// /// * `Step::backward_checked(a, n) == (0..n).try_fold(a, |x, _| Step::backward_checked(&x, 1))` /// * Corollary: `Step::backward_checked(&a, 0) == Some(a)` fn backward_checked(start: Self, count: usize) -> Option; /// Returns the value that would be obtained by taking the *predecessor* /// of `self` `count` times. /// /// If this would overflow the range of values supported by `Self`, /// this function is allowed to panic, wrap, or saturate. /// The suggested behavior is to panic when debug assertions are enabled, /// and to wrap or saturate otherwise. /// /// Unsafe code should not rely on the correctness of behavior after overflow. /// /// # Invariants /// /// For any `a`, `n`, and `m`, where no overflow occurs: /// /// * `Step::backward(Step::backward(a, n), m) == Step::backward(a, n + m)` /// /// For any `a` and `n`, where no overflow occurs: /// /// * `Step::backward_checked(a, n) == Some(Step::backward(a, n))` /// * `Step::backward(a, n) == (0..n).fold(a, |x, _| Step::backward(x, 1))` /// * Corollary: `Step::backward(a, 0) == a` /// * `Step::backward(a, n) <= a` /// * `Step::forward(Step::backward(a, n), n) == a` fn backward(start: Self, count: usize) -> Self { Step::backward_checked(start, count).expect("overflow in `Step::backward`") } /// Returns the value that would be obtained by taking the *predecessor* /// of `self` `count` times. /// /// # Safety /// /// It is undefined behavior for this operation to overflow the /// range of values supported by `Self`. If you cannot guarantee that this /// will not overflow, use `backward` or `backward_checked` instead. /// /// # Invariants /// /// For any `a`: /// /// * if there exists `b` such that `b < a`, it is safe to call `Step::backward_unchecked(a, 1)` /// * if there exists `b`, `n` such that `steps_between(&b, &a) == Some(n)`, /// it is safe to call `Step::backward_unchecked(a, m)` for any `m <= n`. /// /// For any `a` and `n`, where no overflow occurs: /// /// * `Step::backward_unchecked(a, n)` is equivalent to `Step::backward(a, n)` unsafe fn backward_unchecked(start: Self, count: usize) -> Self { Step::backward(start, count) } } // These are still macro-generated because the integer literals resolve to different types. macro_rules! step_identical_methods { () => { #[inline] unsafe fn forward_unchecked(start: Self, n: usize) -> Self { // SAFETY: the caller has to guarantee that `start + n` doesn't overflow. unsafe { start.unchecked_add(n as Self) } } #[inline] unsafe fn backward_unchecked(start: Self, n: usize) -> Self { // SAFETY: the caller has to guarantee that `start - n` doesn't overflow. unsafe { start.unchecked_sub(n as Self) } } #[inline] #[allow(arithmetic_overflow)] #[rustc_inherit_overflow_checks] fn forward(start: Self, n: usize) -> Self { // In debug builds, trigger a panic on overflow. // This should optimize completely out in release builds. if Self::forward_checked(start, n).is_none() { let _ = Self::MAX + 1; } // Do wrapping math to allow e.g. `Step::forward(-128i8, 255)`. start.wrapping_add(n as Self) } #[inline] #[allow(arithmetic_overflow)] #[rustc_inherit_overflow_checks] fn backward(start: Self, n: usize) -> Self { // In debug builds, trigger a panic on overflow. // This should optimize completely out in release builds. if Self::backward_checked(start, n).is_none() { let _ = Self::MIN - 1; } // Do wrapping math to allow e.g. `Step::backward(127i8, 255)`. start.wrapping_sub(n as Self) } }; } macro_rules! step_integer_impls { { narrower than or same width as usize: $( [ $u_narrower:ident $i_narrower:ident ] ),+; wider than usize: $( [ $u_wider:ident $i_wider:ident ] ),+; } => { $( #[allow(unreachable_patterns)] #[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")] impl Step for $u_narrower { step_identical_methods!(); #[inline] fn steps_between(start: &Self, end: &Self) -> Option { if *start <= *end { // This relies on $u_narrower <= usize Some((*end - *start) as usize) } else { None } } #[inline] fn forward_checked(start: Self, n: usize) -> Option { match Self::try_from(n) { Ok(n) => start.checked_add(n), Err(_) => None, // if n is out of range, `unsigned_start + n` is too } } #[inline] fn backward_checked(start: Self, n: usize) -> Option { match Self::try_from(n) { Ok(n) => start.checked_sub(n), Err(_) => None, // if n is out of range, `unsigned_start - n` is too } } } #[allow(unreachable_patterns)] #[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")] impl Step for $i_narrower { step_identical_methods!(); #[inline] fn steps_between(start: &Self, end: &Self) -> Option { if *start <= *end { // This relies on $i_narrower <= usize // // Casting to isize extends the width but preserves the sign. // Use wrapping_sub in isize space and cast to usize to compute // the difference that might not fit inside the range of isize. Some((*end as isize).wrapping_sub(*start as isize) as usize) } else { None } } #[inline] fn forward_checked(start: Self, n: usize) -> Option { match $u_narrower::try_from(n) { Ok(n) => { // Wrapping handles cases like // `Step::forward(-120_i8, 200) == Some(80_i8)`, // even though 200 is out of range for i8. let wrapped = start.wrapping_add(n as Self); if wrapped >= start { Some(wrapped) } else { None // Addition overflowed } } // If n is out of range of e.g. u8, // then it is bigger than the entire range for i8 is wide // so `any_i8 + n` necessarily overflows i8. Err(_) => None, } } #[inline] fn backward_checked(start: Self, n: usize) -> Option { match $u_narrower::try_from(n) { Ok(n) => { // Wrapping handles cases like // `Step::forward(-120_i8, 200) == Some(80_i8)`, // even though 200 is out of range for i8. let wrapped = start.wrapping_sub(n as Self); if wrapped <= start { Some(wrapped) } else { None // Subtraction overflowed } } // If n is out of range of e.g. u8, // then it is bigger than the entire range for i8 is wide // so `any_i8 - n` necessarily overflows i8. Err(_) => None, } } } )+ $( #[allow(unreachable_patterns)] #[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")] impl Step for $u_wider { step_identical_methods!(); #[inline] fn steps_between(start: &Self, end: &Self) -> Option { if *start <= *end { usize::try_from(*end - *start).ok() } else { None } } #[inline] fn forward_checked(start: Self, n: usize) -> Option { start.checked_add(n as Self) } #[inline] fn backward_checked(start: Self, n: usize) -> Option { start.checked_sub(n as Self) } } #[allow(unreachable_patterns)] #[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")] impl Step for $i_wider { step_identical_methods!(); #[inline] fn steps_between(start: &Self, end: &Self) -> Option { if *start <= *end { match end.checked_sub(*start) { Some(result) => usize::try_from(result).ok(), // If the difference is too big for e.g. i128, // it's also gonna be too big for usize with fewer bits. None => None, } } else { None } } #[inline] fn forward_checked(start: Self, n: usize) -> Option { start.checked_add(n as Self) } #[inline] fn backward_checked(start: Self, n: usize) -> Option { start.checked_sub(n as Self) } } )+ }; } #[cfg(target_pointer_width = "64")] step_integer_impls! { narrower than or same width as usize: [u8 i8], [u16 i16], [u32 i32], [u64 i64], [usize isize]; wider than usize: [u128 i128]; } #[cfg(target_pointer_width = "32")] step_integer_impls! { narrower than or same width as usize: [u8 i8], [u16 i16], [u32 i32], [usize isize]; wider than usize: [u64 i64], [u128 i128]; } #[cfg(target_pointer_width = "16")] step_integer_impls! { narrower than or same width as usize: [u8 i8], [u16 i16], [usize isize]; wider than usize: [u32 i32], [u64 i64], [u128 i128]; } #[unstable(feature = "step_trait", reason = "recently redesigned", issue = "42168")] impl Step for char { #[inline] fn steps_between(&start: &char, &end: &char) -> Option { let start = start as u32; let end = end as u32; if start <= end { let count = end - start; if start < 0xD800 && 0xE000 <= end { usize::try_from(count - 0x800).ok() } else { usize::try_from(count).ok() } } else { None } } #[inline] fn forward_checked(start: char, count: usize) -> Option { let start = start as u32; let mut res = Step::forward_checked(start, count)?; if start < 0xD800 && 0xD800 <= res { res = Step::forward_checked(res, 0x800)?; } if res <= char::MAX as u32 { // SAFETY: res is a valid unicode scalar // (below 0x110000 and not in 0xD800..0xE000) Some(unsafe { char::from_u32_unchecked(res) }) } else { None } } #[inline] fn backward_checked(start: char, count: usize) -> Option { let start = start as u32; let mut res = Step::backward_checked(start, count)?; if start >= 0xE000 && 0xE000 > res { res = Step::backward_checked(res, 0x800)?; } // SAFETY: res is a valid unicode scalar // (below 0x110000 and not in 0xD800..0xE000) Some(unsafe { char::from_u32_unchecked(res) }) } #[inline] unsafe fn forward_unchecked(start: char, count: usize) -> char { let start = start as u32; // SAFETY: the caller must guarantee that this doesn't overflow // the range of values for a char. let mut res = unsafe { Step::forward_unchecked(start, count) }; if start < 0xD800 && 0xD800 <= res { // SAFETY: the caller must guarantee that this doesn't overflow // the range of values for a char. res = unsafe { Step::forward_unchecked(res, 0x800) }; } // SAFETY: because of the previous contract, this is guaranteed // by the caller to be a valid char. unsafe { char::from_u32_unchecked(res) } } #[inline] unsafe fn backward_unchecked(start: char, count: usize) -> char { let start = start as u32; // SAFETY: the caller must guarantee that this doesn't overflow // the range of values for a char. let mut res = unsafe { Step::backward_unchecked(start, count) }; if start >= 0xE000 && 0xE000 > res { // SAFETY: the caller must guarantee that this doesn't overflow // the range of values for a char. res = unsafe { Step::backward_unchecked(res, 0x800) }; } // SAFETY: because of the previous contract, this is guaranteed // by the caller to be a valid char. unsafe { char::from_u32_unchecked(res) } } } macro_rules! range_exact_iter_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for ops::Range<$t> { } )*) } /// Safety: This macro must only be used on types that are `Copy` and result in ranges /// which have an exact `size_hint()` where the upper bound must not be `None`. macro_rules! unsafe_range_trusted_random_access_impl { ($($t:ty)*) => ($( #[doc(hidden)] #[unstable(feature = "trusted_random_access", issue = "none")] unsafe impl TrustedRandomAccess for ops::Range<$t> {} #[doc(hidden)] #[unstable(feature = "trusted_random_access", issue = "none")] unsafe impl TrustedRandomAccessNoCoerce for ops::Range<$t> { const MAY_HAVE_SIDE_EFFECT: bool = false; } )*) } macro_rules! range_incl_exact_iter_impl { ($($t:ty)*) => ($( #[stable(feature = "inclusive_range", since = "1.26.0")] impl ExactSizeIterator for ops::RangeInclusive<$t> { } )*) } /// Specialization implementations for `Range`. trait RangeIteratorImpl { type Item; // Iterator fn spec_next(&mut self) -> Option; fn spec_nth(&mut self, n: usize) -> Option; fn spec_advance_by(&mut self, n: usize) -> Result<(), usize>; // DoubleEndedIterator fn spec_next_back(&mut self) -> Option; fn spec_nth_back(&mut self, n: usize) -> Option; fn spec_advance_back_by(&mut self, n: usize) -> Result<(), usize>; } impl RangeIteratorImpl for ops::Range { type Item = A; #[inline] default fn spec_next(&mut self) -> Option { if self.start < self.end { let n = Step::forward_checked(self.start.clone(), 1).expect("`Step` invariants not upheld"); Some(mem::replace(&mut self.start, n)) } else { None } } #[inline] default fn spec_nth(&mut self, n: usize) -> Option { if let Some(plus_n) = Step::forward_checked(self.start.clone(), n) { if plus_n < self.end { self.start = Step::forward_checked(plus_n.clone(), 1).expect("`Step` invariants not upheld"); return Some(plus_n); } } self.start = self.end.clone(); None } #[inline] default fn spec_advance_by(&mut self, n: usize) -> Result<(), usize> { let available = if self.start <= self.end { Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX) } else { 0 }; let taken = available.min(n); self.start = Step::forward_checked(self.start.clone(), taken).expect("`Step` invariants not upheld"); if taken < n { Err(taken) } else { Ok(()) } } #[inline] default fn spec_next_back(&mut self) -> Option { if self.start < self.end { self.end = Step::backward_checked(self.end.clone(), 1).expect("`Step` invariants not upheld"); Some(self.end.clone()) } else { None } } #[inline] default fn spec_nth_back(&mut self, n: usize) -> Option { if let Some(minus_n) = Step::backward_checked(self.end.clone(), n) { if minus_n > self.start { self.end = Step::backward_checked(minus_n, 1).expect("`Step` invariants not upheld"); return Some(self.end.clone()); } } self.end = self.start.clone(); None } #[inline] default fn spec_advance_back_by(&mut self, n: usize) -> Result<(), usize> { let available = if self.start <= self.end { Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX) } else { 0 }; let taken = available.min(n); self.end = Step::backward_checked(self.end.clone(), taken).expect("`Step` invariants not upheld"); if taken < n { Err(taken) } else { Ok(()) } } } impl RangeIteratorImpl for ops::Range { #[inline] fn spec_next(&mut self) -> Option { if self.start < self.end { // SAFETY: just checked precondition let n = unsafe { Step::forward_unchecked(self.start.clone(), 1) }; Some(mem::replace(&mut self.start, n)) } else { None } } #[inline] fn spec_nth(&mut self, n: usize) -> Option { if let Some(plus_n) = Step::forward_checked(self.start.clone(), n) { if plus_n < self.end { // SAFETY: just checked precondition self.start = unsafe { Step::forward_unchecked(plus_n.clone(), 1) }; return Some(plus_n); } } self.start = self.end.clone(); None } #[inline] fn spec_advance_by(&mut self, n: usize) -> Result<(), usize> { let available = if self.start <= self.end { Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX) } else { 0 }; let taken = available.min(n); // SAFETY: the conditions above ensure that the count is in bounds. If start <= end // then steps_between either returns a bound to which we clamp or returns None which // together with the initial inequality implies more than usize::MAX steps. // Otherwise 0 is returned which always safe to use. self.start = unsafe { Step::forward_unchecked(self.start.clone(), taken) }; if taken < n { Err(taken) } else { Ok(()) } } #[inline] fn spec_next_back(&mut self) -> Option { if self.start < self.end { // SAFETY: just checked precondition self.end = unsafe { Step::backward_unchecked(self.end.clone(), 1) }; Some(self.end.clone()) } else { None } } #[inline] fn spec_nth_back(&mut self, n: usize) -> Option { if let Some(minus_n) = Step::backward_checked(self.end.clone(), n) { if minus_n > self.start { // SAFETY: just checked precondition self.end = unsafe { Step::backward_unchecked(minus_n, 1) }; return Some(self.end.clone()); } } self.end = self.start.clone(); None } #[inline] fn spec_advance_back_by(&mut self, n: usize) -> Result<(), usize> { let available = if self.start <= self.end { Step::steps_between(&self.start, &self.end).unwrap_or(usize::MAX) } else { 0 }; let taken = available.min(n); // SAFETY: same as the spec_advance_by() implementation self.end = unsafe { Step::backward_unchecked(self.end.clone(), taken) }; if taken < n { Err(taken) } else { Ok(()) } } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for ops::Range { type Item = A; #[inline] fn next(&mut self) -> Option { self.spec_next() } #[inline] fn size_hint(&self) -> (usize, Option) { if self.start < self.end { let hint = Step::steps_between(&self.start, &self.end); (hint.unwrap_or(usize::MAX), hint) } else { (0, Some(0)) } } #[inline] fn nth(&mut self, n: usize) -> Option { self.spec_nth(n) } #[inline] fn last(mut self) -> Option { self.next_back() } #[inline] fn min(mut self) -> Option { self.next() } #[inline] fn max(mut self) -> Option { self.next_back() } #[inline] fn is_sorted(self) -> bool { true } #[inline] fn advance_by(&mut self, n: usize) -> Result<(), usize> { self.spec_advance_by(n) } #[inline] unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item where Self: TrustedRandomAccessNoCoerce, { // SAFETY: The TrustedRandomAccess contract requires that callers only pass an index // that is in bounds. // Additionally Self: TrustedRandomAccess is only implemented for Copy types // which means even repeated reads of the same index would be safe. unsafe { Step::forward_unchecked(self.start.clone(), idx) } } } // These macros generate `ExactSizeIterator` impls for various range types. // // * `ExactSizeIterator::len` is required to always return an exact `usize`, // so no range can be longer than `usize::MAX`. // * For integer types in `Range<_>` this is the case for types narrower than or as wide as `usize`. // For integer types in `RangeInclusive<_>` // this is the case for types *strictly narrower* than `usize` // since e.g. `(0..=u64::MAX).len()` would be `u64::MAX + 1`. range_exact_iter_impl! { usize u8 u16 isize i8 i16 // These are incorrect per the reasoning above, // but removing them would be a breaking change as they were stabilized in Rust 1.0.0. // So e.g. `(0..66_000_u32).len()` for example will compile without error or warnings // on 16-bit platforms, but continue to give a wrong result. u32 i32 } unsafe_range_trusted_random_access_impl! { usize u8 u16 isize i8 i16 } #[cfg(target_pointer_width = "32")] unsafe_range_trusted_random_access_impl! { u32 i32 } #[cfg(target_pointer_width = "64")] unsafe_range_trusted_random_access_impl! { u32 i32 u64 i64 } range_incl_exact_iter_impl! { u8 i8 // These are incorrect per the reasoning above, // but removing them would be a breaking change as they were stabilized in Rust 1.26.0. // So e.g. `(0..=u16::MAX).len()` for example will compile without error or warnings // on 16-bit platforms, but continue to give a wrong result. u16 i16 } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for ops::Range { #[inline] fn next_back(&mut self) -> Option { self.spec_next_back() } #[inline] fn nth_back(&mut self, n: usize) -> Option { self.spec_nth_back(n) } #[inline] fn advance_back_by(&mut self, n: usize) -> Result<(), usize> { self.spec_advance_back_by(n) } } // Safety: // The following invariants for `Step::steps_between` exist: // // > * `steps_between(&a, &b) == Some(n)` only if `a <= b` // > * Note that `a <= b` does _not_ imply `steps_between(&a, &b) != None`; // > this is the case when it would require more than `usize::MAX` steps to // > get to `b` // > * `steps_between(&a, &b) == None` if `a > b` // // The first invariant is what is generally required for `TrustedLen` to be // sound. The note addendum satisfies an additional `TrustedLen` invariant. // // > The upper bound must only be `None` if the actual iterator length is larger // > than `usize::MAX` // // The second invariant logically follows the first so long as the `PartialOrd` // implementation is correct; regardless it is explicitly stated. If `a < b` // then `(0, Some(0))` is returned by `ops::Range::size_hint`. As such // the second invariant is upheld. #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for ops::Range {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for ops::Range {} #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for ops::RangeFrom { type Item = A; #[inline] fn next(&mut self) -> Option { let n = Step::forward(self.start.clone(), 1); Some(mem::replace(&mut self.start, n)) } #[inline] fn size_hint(&self) -> (usize, Option) { (usize::MAX, None) } #[inline] fn nth(&mut self, n: usize) -> Option { let plus_n = Step::forward(self.start.clone(), n); self.start = Step::forward(plus_n.clone(), 1); Some(plus_n) } } // Safety: See above implementation for `ops::Range` #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for ops::RangeFrom {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for ops::RangeFrom {} trait RangeInclusiveIteratorImpl { type Item; // Iterator fn spec_next(&mut self) -> Option; fn spec_try_fold(&mut self, init: B, f: F) -> R where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try; // DoubleEndedIterator fn spec_next_back(&mut self) -> Option; fn spec_try_rfold(&mut self, init: B, f: F) -> R where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try; } impl RangeInclusiveIteratorImpl for ops::RangeInclusive { type Item = A; #[inline] default fn spec_next(&mut self) -> Option { if self.is_empty() { return None; } let is_iterating = self.start < self.end; Some(if is_iterating { let n = Step::forward_checked(self.start.clone(), 1).expect("`Step` invariants not upheld"); mem::replace(&mut self.start, n) } else { self.exhausted = true; self.start.clone() }) } #[inline] default fn spec_try_fold(&mut self, init: B, mut f: F) -> R where Self: Sized, F: FnMut(B, A) -> R, R: Try, { if self.is_empty() { return try { init }; } let mut accum = init; while self.start < self.end { let n = Step::forward_checked(self.start.clone(), 1).expect("`Step` invariants not upheld"); let n = mem::replace(&mut self.start, n); accum = f(accum, n)?; } self.exhausted = true; if self.start == self.end { accum = f(accum, self.start.clone())?; } try { accum } } #[inline] default fn spec_next_back(&mut self) -> Option { if self.is_empty() { return None; } let is_iterating = self.start < self.end; Some(if is_iterating { let n = Step::backward_checked(self.end.clone(), 1).expect("`Step` invariants not upheld"); mem::replace(&mut self.end, n) } else { self.exhausted = true; self.end.clone() }) } #[inline] default fn spec_try_rfold(&mut self, init: B, mut f: F) -> R where Self: Sized, F: FnMut(B, A) -> R, R: Try, { if self.is_empty() { return try { init }; } let mut accum = init; while self.start < self.end { let n = Step::backward_checked(self.end.clone(), 1).expect("`Step` invariants not upheld"); let n = mem::replace(&mut self.end, n); accum = f(accum, n)?; } self.exhausted = true; if self.start == self.end { accum = f(accum, self.start.clone())?; } try { accum } } } impl RangeInclusiveIteratorImpl for ops::RangeInclusive { #[inline] fn spec_next(&mut self) -> Option { if self.is_empty() { return None; } let is_iterating = self.start < self.end; Some(if is_iterating { // SAFETY: just checked precondition let n = unsafe { Step::forward_unchecked(self.start.clone(), 1) }; mem::replace(&mut self.start, n) } else { self.exhausted = true; self.start.clone() }) } #[inline] fn spec_try_fold(&mut self, init: B, mut f: F) -> R where Self: Sized, F: FnMut(B, T) -> R, R: Try, { if self.is_empty() { return try { init }; } let mut accum = init; while self.start < self.end { // SAFETY: just checked precondition let n = unsafe { Step::forward_unchecked(self.start.clone(), 1) }; let n = mem::replace(&mut self.start, n); accum = f(accum, n)?; } self.exhausted = true; if self.start == self.end { accum = f(accum, self.start.clone())?; } try { accum } } #[inline] fn spec_next_back(&mut self) -> Option { if self.is_empty() { return None; } let is_iterating = self.start < self.end; Some(if is_iterating { // SAFETY: just checked precondition let n = unsafe { Step::backward_unchecked(self.end.clone(), 1) }; mem::replace(&mut self.end, n) } else { self.exhausted = true; self.end.clone() }) } #[inline] fn spec_try_rfold(&mut self, init: B, mut f: F) -> R where Self: Sized, F: FnMut(B, T) -> R, R: Try, { if self.is_empty() { return try { init }; } let mut accum = init; while self.start < self.end { // SAFETY: just checked precondition let n = unsafe { Step::backward_unchecked(self.end.clone(), 1) }; let n = mem::replace(&mut self.end, n); accum = f(accum, n)?; } self.exhausted = true; if self.start == self.end { accum = f(accum, self.start.clone())?; } try { accum } } } #[stable(feature = "inclusive_range", since = "1.26.0")] impl Iterator for ops::RangeInclusive { type Item = A; #[inline] fn next(&mut self) -> Option { self.spec_next() } #[inline] fn size_hint(&self) -> (usize, Option) { if self.is_empty() { return (0, Some(0)); } match Step::steps_between(&self.start, &self.end) { Some(hint) => (hint.saturating_add(1), hint.checked_add(1)), None => (usize::MAX, None), } } #[inline] fn nth(&mut self, n: usize) -> Option { if self.is_empty() { return None; } if let Some(plus_n) = Step::forward_checked(self.start.clone(), n) { use crate::cmp::Ordering::*; match plus_n.partial_cmp(&self.end) { Some(Less) => { self.start = Step::forward(plus_n.clone(), 1); return Some(plus_n); } Some(Equal) => { self.start = plus_n.clone(); self.exhausted = true; return Some(plus_n); } _ => {} } } self.start = self.end.clone(); self.exhausted = true; None } #[inline] fn try_fold(&mut self, init: B, f: F) -> R where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try, { self.spec_try_fold(init, f) } impl_fold_via_try_fold! { fold -> try_fold } #[inline] fn last(mut self) -> Option { self.next_back() } #[inline] fn min(mut self) -> Option { self.next() } #[inline] fn max(mut self) -> Option { self.next_back() } #[inline] fn is_sorted(self) -> bool { true } } #[stable(feature = "inclusive_range", since = "1.26.0")] impl DoubleEndedIterator for ops::RangeInclusive { #[inline] fn next_back(&mut self) -> Option { self.spec_next_back() } #[inline] fn nth_back(&mut self, n: usize) -> Option { if self.is_empty() { return None; } if let Some(minus_n) = Step::backward_checked(self.end.clone(), n) { use crate::cmp::Ordering::*; match minus_n.partial_cmp(&self.start) { Some(Greater) => { self.end = Step::backward(minus_n.clone(), 1); return Some(minus_n); } Some(Equal) => { self.end = minus_n.clone(); self.exhausted = true; return Some(minus_n); } _ => {} } } self.end = self.start.clone(); self.exhausted = true; None } #[inline] fn try_rfold(&mut self, init: B, f: F) -> R where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try, { self.spec_try_rfold(init, f) } impl_fold_via_try_fold! { rfold -> try_rfold } } // Safety: See above implementation for `ops::Range` #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for ops::RangeInclusive {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for ops::RangeInclusive {}