//! Slow, fallback algorithm for cases the Eisel-Lemire algorithm cannot round. use crate::num::dec2flt::common::BiasedFp; use crate::num::dec2flt::decimal::{parse_decimal, Decimal}; use crate::num::dec2flt::float::RawFloat; /// Parse the significant digits and biased, binary exponent of a float. /// /// This is a fallback algorithm that uses a big-integer representation /// of the float, and therefore is considerably slower than faster /// approximations. However, it will always determine how to round /// the significant digits to the nearest machine float, allowing /// use to handle near half-way cases. /// /// Near half-way cases are halfway between two consecutive machine floats. /// For example, the float `16777217.0` has a bitwise representation of /// `100000000000000000000000 1`. Rounding to a single-precision float, /// the trailing `1` is truncated. Using round-nearest, tie-even, any /// value above `16777217.0` must be rounded up to `16777218.0`, while /// any value before or equal to `16777217.0` must be rounded down /// to `16777216.0`. These near-halfway conversions therefore may require /// a large number of digits to unambiguously determine how to round. /// /// The algorithms described here are based on "Processing Long Numbers Quickly", /// available here: . pub(crate) fn parse_long_mantissa(s: &[u8]) -> BiasedFp { const MAX_SHIFT: usize = 60; const NUM_POWERS: usize = 19; const POWERS: [u8; 19] = [0, 3, 6, 9, 13, 16, 19, 23, 26, 29, 33, 36, 39, 43, 46, 49, 53, 56, 59]; let get_shift = |n| { if n < NUM_POWERS { POWERS[n] as usize } else { MAX_SHIFT } }; let fp_zero = BiasedFp::zero_pow2(0); let fp_inf = BiasedFp::zero_pow2(F::INFINITE_POWER); let mut d = parse_decimal(s); // Short-circuit if the value can only be a literal 0 or infinity. if d.num_digits == 0 || d.decimal_point < -324 { return fp_zero; } else if d.decimal_point >= 310 { return fp_inf; } let mut exp2 = 0_i32; // Shift right toward (1/2 ... 1]. while d.decimal_point > 0 { let n = d.decimal_point as usize; let shift = get_shift(n); d.right_shift(shift); if d.decimal_point < -Decimal::DECIMAL_POINT_RANGE { return fp_zero; } exp2 += shift as i32; } // Shift left toward (1/2 ... 1]. while d.decimal_point <= 0 { let shift = if d.decimal_point == 0 { match d.digits[0] { digit if digit >= 5 => break, 0 | 1 => 2, _ => 1, } } else { get_shift((-d.decimal_point) as _) }; d.left_shift(shift); if d.decimal_point > Decimal::DECIMAL_POINT_RANGE { return fp_inf; } exp2 -= shift as i32; } // We are now in the range [1/2 ... 1] but the binary format uses [1 ... 2]. exp2 -= 1; while (F::MINIMUM_EXPONENT + 1) > exp2 { let mut n = ((F::MINIMUM_EXPONENT + 1) - exp2) as usize; if n > MAX_SHIFT { n = MAX_SHIFT; } d.right_shift(n); exp2 += n as i32; } if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER { return fp_inf; } // Shift the decimal to the hidden bit, and then round the value // to get the high mantissa+1 bits. d.left_shift(F::MANTISSA_EXPLICIT_BITS + 1); let mut mantissa = d.round(); if mantissa >= (1_u64 << (F::MANTISSA_EXPLICIT_BITS + 1)) { // Rounding up overflowed to the carry bit, need to // shift back to the hidden bit. d.right_shift(1); exp2 += 1; mantissa = d.round(); if (exp2 - F::MINIMUM_EXPONENT) >= F::INFINITE_POWER { return fp_inf; } } let mut power2 = exp2 - F::MINIMUM_EXPONENT; if mantissa < (1_u64 << F::MANTISSA_EXPLICIT_BITS) { power2 -= 1; } // Zero out all the bits above the explicit mantissa bits. mantissa &= (1_u64 << F::MANTISSA_EXPLICIT_BITS) - 1; BiasedFp { f: mantissa, e: power2 } }