//! Almost direct (but slightly optimized) Rust translation of Figure 3 of "Printing //! Floating-Point Numbers Quickly and Accurately"[^1]. //! //! [^1]: Burger, R. G. and Dybvig, R. K. 1996. Printing floating-point numbers //! quickly and accurately. SIGPLAN Not. 31, 5 (May. 1996), 108-116. use crate::cmp::Ordering; use crate::mem::MaybeUninit; use crate::num::bignum::Big32x40 as Big; use crate::num::bignum::Digit32 as Digit; use crate::num::flt2dec::estimator::estimate_scaling_factor; use crate::num::flt2dec::{round_up, Decoded, MAX_SIG_DIGITS}; static POW10: [Digit; 10] = [1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000]; static TWOPOW10: [Digit; 10] = [2, 20, 200, 2000, 20000, 200000, 2000000, 20000000, 200000000, 2000000000]; // precalculated arrays of `Digit`s for 10^(2^n) static POW10TO16: [Digit; 2] = [0x6fc10000, 0x2386f2]; static POW10TO32: [Digit; 4] = [0, 0x85acef81, 0x2d6d415b, 0x4ee]; static POW10TO64: [Digit; 7] = [0, 0, 0xbf6a1f01, 0x6e38ed64, 0xdaa797ed, 0xe93ff9f4, 0x184f03]; static POW10TO128: [Digit; 14] = [ 0, 0, 0, 0, 0x2e953e01, 0x3df9909, 0xf1538fd, 0x2374e42f, 0xd3cff5ec, 0xc404dc08, 0xbccdb0da, 0xa6337f19, 0xe91f2603, 0x24e, ]; static POW10TO256: [Digit; 27] = [ 0, 0, 0, 0, 0, 0, 0, 0, 0x982e7c01, 0xbed3875b, 0xd8d99f72, 0x12152f87, 0x6bde50c6, 0xcf4a6e70, 0xd595d80f, 0x26b2716e, 0xadc666b0, 0x1d153624, 0x3c42d35a, 0x63ff540e, 0xcc5573c0, 0x65f9ef17, 0x55bc28f2, 0x80dcc7f7, 0xf46eeddc, 0x5fdcefce, 0x553f7, ]; #[doc(hidden)] pub fn mul_pow10(x: &mut Big, n: usize) -> &mut Big { debug_assert!(n < 512); if n & 7 != 0 { x.mul_small(POW10[n & 7]); } if n & 8 != 0 { x.mul_small(POW10[8]); } if n & 16 != 0 { x.mul_digits(&POW10TO16); } if n & 32 != 0 { x.mul_digits(&POW10TO32); } if n & 64 != 0 { x.mul_digits(&POW10TO64); } if n & 128 != 0 { x.mul_digits(&POW10TO128); } if n & 256 != 0 { x.mul_digits(&POW10TO256); } x } fn div_2pow10(x: &mut Big, mut n: usize) -> &mut Big { let largest = POW10.len() - 1; while n > largest { x.div_rem_small(POW10[largest]); n -= largest; } x.div_rem_small(TWOPOW10[n]); x } // only usable when `x < 16 * scale`; `scaleN` should be `scale.mul_small(N)` fn div_rem_upto_16<'a>( x: &'a mut Big, scale: &Big, scale2: &Big, scale4: &Big, scale8: &Big, ) -> (u8, &'a mut Big) { let mut d = 0; if *x >= *scale8 { x.sub(scale8); d += 8; } if *x >= *scale4 { x.sub(scale4); d += 4; } if *x >= *scale2 { x.sub(scale2); d += 2; } if *x >= *scale { x.sub(scale); d += 1; } debug_assert!(*x < *scale); (d, x) } /// The shortest mode implementation for Dragon. pub fn format_shortest<'a>( d: &Decoded, buf: &'a mut [MaybeUninit], ) -> (/*digits*/ &'a [u8], /*exp*/ i16) { // the number `v` to format is known to be: // - equal to `mant * 2^exp`; // - preceded by `(mant - 2 * minus) * 2^exp` in the original type; and // - followed by `(mant + 2 * plus) * 2^exp` in the original type. // // obviously, `minus` and `plus` cannot be zero. (for infinities, we use out-of-range values.) // also we assume that at least one digit is generated, i.e., `mant` cannot be zero too. // // this also means that any number between `low = (mant - minus) * 2^exp` and // `high = (mant + plus) * 2^exp` will map to this exact floating point number, // with bounds included when the original mantissa was even (i.e., `!mant_was_odd`). assert!(d.mant > 0); assert!(d.minus > 0); assert!(d.plus > 0); assert!(d.mant.checked_add(d.plus).is_some()); assert!(d.mant.checked_sub(d.minus).is_some()); assert!(buf.len() >= MAX_SIG_DIGITS); // `a.cmp(&b) < rounding` is `if d.inclusive {a <= b} else {a < b}` let rounding = if d.inclusive { Ordering::Greater } else { Ordering::Equal }; // estimate `k_0` from original inputs satisfying `10^(k_0-1) < high <= 10^(k_0+1)`. // the tight bound `k` satisfying `10^(k-1) < high <= 10^k` is calculated later. let mut k = estimate_scaling_factor(d.mant + d.plus, d.exp); // convert `{mant, plus, minus} * 2^exp` into the fractional form so that: // - `v = mant / scale` // - `low = (mant - minus) / scale` // - `high = (mant + plus) / scale` let mut mant = Big::from_u64(d.mant); let mut minus = Big::from_u64(d.minus); let mut plus = Big::from_u64(d.plus); let mut scale = Big::from_small(1); if d.exp < 0 { scale.mul_pow2(-d.exp as usize); } else { mant.mul_pow2(d.exp as usize); minus.mul_pow2(d.exp as usize); plus.mul_pow2(d.exp as usize); } // divide `mant` by `10^k`. now `scale / 10 < mant + plus <= scale * 10`. if k >= 0 { mul_pow10(&mut scale, k as usize); } else { mul_pow10(&mut mant, -k as usize); mul_pow10(&mut minus, -k as usize); mul_pow10(&mut plus, -k as usize); } // fixup when `mant + plus > scale` (or `>=`). // we are not actually modifying `scale`, since we can skip the initial multiplication instead. // now `scale < mant + plus <= scale * 10` and we are ready to generate digits. // // note that `d[0]` *can* be zero, when `scale - plus < mant < scale`. // in this case rounding-up condition (`up` below) will be triggered immediately. if scale.cmp(mant.clone().add(&plus)) < rounding { // equivalent to scaling `scale` by 10 k += 1; } else { mant.mul_small(10); minus.mul_small(10); plus.mul_small(10); } // cache `(2, 4, 8) * scale` for digit generation. let mut scale2 = scale.clone(); scale2.mul_pow2(1); let mut scale4 = scale.clone(); scale4.mul_pow2(2); let mut scale8 = scale.clone(); scale8.mul_pow2(3); let mut down; let mut up; let mut i = 0; loop { // invariants, where `d[0..n-1]` are digits generated so far: // - `v = mant / scale * 10^(k-n-1) + d[0..n-1] * 10^(k-n)` // - `v - low = minus / scale * 10^(k-n-1)` // - `high - v = plus / scale * 10^(k-n-1)` // - `(mant + plus) / scale <= 10` (thus `mant / scale < 10`) // where `d[i..j]` is a shorthand for `d[i] * 10^(j-i) + ... + d[j-1] * 10 + d[j]`. // generate one digit: `d[n] = floor(mant / scale) < 10`. let (d, _) = div_rem_upto_16(&mut mant, &scale, &scale2, &scale4, &scale8); debug_assert!(d < 10); buf[i] = MaybeUninit::new(b'0' + d); i += 1; // this is a simplified description of the modified Dragon algorithm. // many intermediate derivations and completeness arguments are omitted for convenience. // // start with modified invariants, as we've updated `n`: // - `v = mant / scale * 10^(k-n) + d[0..n-1] * 10^(k-n)` // - `v - low = minus / scale * 10^(k-n)` // - `high - v = plus / scale * 10^(k-n)` // // assume that `d[0..n-1]` is the shortest representation between `low` and `high`, // i.e., `d[0..n-1]` satisfies both of the following but `d[0..n-2]` doesn't: // - `low < d[0..n-1] * 10^(k-n) < high` (bijectivity: digits round to `v`); and // - `abs(v / 10^(k-n) - d[0..n-1]) <= 1/2` (the last digit is correct). // // the second condition simplifies to `2 * mant <= scale`. // solving invariants in terms of `mant`, `low` and `high` yields // a simpler version of the first condition: `-plus < mant < minus`. // since `-plus < 0 <= mant`, we have the correct shortest representation // when `mant < minus` and `2 * mant <= scale`. // (the former becomes `mant <= minus` when the original mantissa is even.) // // when the second doesn't hold (`2 * mant > scale`), we need to increase the last digit. // this is enough for restoring that condition: we already know that // the digit generation guarantees `0 <= v / 10^(k-n) - d[0..n-1] < 1`. // in this case, the first condition becomes `-plus < mant - scale < minus`. // since `mant < scale` after the generation, we have `scale < mant + plus`. // (again, this becomes `scale <= mant + plus` when the original mantissa is even.) // // in short: // - stop and round `down` (keep digits as is) when `mant < minus` (or `<=`). // - stop and round `up` (increase the last digit) when `scale < mant + plus` (or `<=`). // - keep generating otherwise. down = mant.cmp(&minus) < rounding; up = scale.cmp(mant.clone().add(&plus)) < rounding; if down || up { break; } // we have the shortest representation, proceed to the rounding // restore the invariants. // this makes the algorithm always terminating: `minus` and `plus` always increases, // but `mant` is clipped modulo `scale` and `scale` is fixed. mant.mul_small(10); minus.mul_small(10); plus.mul_small(10); } // rounding up happens when // i) only the rounding-up condition was triggered, or // ii) both conditions were triggered and tie breaking prefers rounding up. if up && (!down || *mant.mul_pow2(1) >= scale) { // if rounding up changes the length, the exponent should also change. // it seems that this condition is very hard to satisfy (possibly impossible), // but we are just being safe and consistent here. // SAFETY: we initialized that memory above. if let Some(c) = round_up(unsafe { MaybeUninit::slice_assume_init_mut(&mut buf[..i]) }) { buf[i] = MaybeUninit::new(c); i += 1; k += 1; } } // SAFETY: we initialized that memory above. (unsafe { MaybeUninit::slice_assume_init_ref(&buf[..i]) }, k) } /// The exact and fixed mode implementation for Dragon. pub fn format_exact<'a>( d: &Decoded, buf: &'a mut [MaybeUninit], limit: i16, ) -> (/*digits*/ &'a [u8], /*exp*/ i16) { assert!(d.mant > 0); assert!(d.minus > 0); assert!(d.plus > 0); assert!(d.mant.checked_add(d.plus).is_some()); assert!(d.mant.checked_sub(d.minus).is_some()); // estimate `k_0` from original inputs satisfying `10^(k_0-1) < v <= 10^(k_0+1)`. let mut k = estimate_scaling_factor(d.mant, d.exp); // `v = mant / scale`. let mut mant = Big::from_u64(d.mant); let mut scale = Big::from_small(1); if d.exp < 0 { scale.mul_pow2(-d.exp as usize); } else { mant.mul_pow2(d.exp as usize); } // divide `mant` by `10^k`. now `scale / 10 < mant <= scale * 10`. if k >= 0 { mul_pow10(&mut scale, k as usize); } else { mul_pow10(&mut mant, -k as usize); } // fixup when `mant + plus >= scale`, where `plus / scale = 10^-buf.len() / 2`. // in order to keep the fixed-size bignum, we actually use `mant + floor(plus) >= scale`. // we are not actually modifying `scale`, since we can skip the initial multiplication instead. // again with the shortest algorithm, `d[0]` can be zero but will be eventually rounded up. if *div_2pow10(&mut scale.clone(), buf.len()).add(&mant) >= scale { // equivalent to scaling `scale` by 10 k += 1; } else { mant.mul_small(10); } // if we are working with the last-digit limitation, we need to shorten the buffer // before the actual rendering in order to avoid double rounding. // note that we have to enlarge the buffer again when rounding up happens! let mut len = if k < limit { // oops, we cannot even produce *one* digit. // this is possible when, say, we've got something like 9.5 and it's being rounded to 10. // we return an empty buffer, with an exception of the later rounding-up case // which occurs when `k == limit` and has to produce exactly one digit. 0 } else if ((k as i32 - limit as i32) as usize) < buf.len() { (k - limit) as usize } else { buf.len() }; if len > 0 { // cache `(2, 4, 8) * scale` for digit generation. // (this can be expensive, so do not calculate them when the buffer is empty.) let mut scale2 = scale.clone(); scale2.mul_pow2(1); let mut scale4 = scale.clone(); scale4.mul_pow2(2); let mut scale8 = scale.clone(); scale8.mul_pow2(3); for i in 0..len { if mant.is_zero() { // following digits are all zeroes, we stop here // do *not* try to perform rounding! rather, fill remaining digits. for c in &mut buf[i..len] { *c = MaybeUninit::new(b'0'); } // SAFETY: we initialized that memory above. return (unsafe { MaybeUninit::slice_assume_init_ref(&buf[..len]) }, k); } let mut d = 0; if mant >= scale8 { mant.sub(&scale8); d += 8; } if mant >= scale4 { mant.sub(&scale4); d += 4; } if mant >= scale2 { mant.sub(&scale2); d += 2; } if mant >= scale { mant.sub(&scale); d += 1; } debug_assert!(mant < scale); debug_assert!(d < 10); buf[i] = MaybeUninit::new(b'0' + d); mant.mul_small(10); } } // rounding up if we stop in the middle of digits // if the following digits are exactly 5000..., check the prior digit and try to // round to even (i.e., avoid rounding up when the prior digit is even). let order = mant.cmp(scale.mul_small(5)); if order == Ordering::Greater || (order == Ordering::Equal // SAFETY: `buf[len-1]` is initialized. && (len == 0 || unsafe { buf[len - 1].assume_init() } & 1 == 1)) { // if rounding up changes the length, the exponent should also change. // but we've been requested a fixed number of digits, so do not alter the buffer... // SAFETY: we initialized that memory above. if let Some(c) = round_up(unsafe { MaybeUninit::slice_assume_init_mut(&mut buf[..len]) }) { // ...unless we've been requested the fixed precision instead. // we also need to check that, if the original buffer was empty, // the additional digit can only be added when `k == limit` (edge case). k += 1; if k > limit && len < buf.len() { buf[len] = MaybeUninit::new(c); len += 1; } } } // SAFETY: we initialized that memory above. (unsafe { MaybeUninit::slice_assume_init_ref(&buf[..len]) }, k) }