/// The addition operator `+`. /// /// Note that `Rhs` is `Self` by default, but this is not mandatory. For /// example, [`std::time::SystemTime`] implements `Add`, which permits /// operations of the form `SystemTime = SystemTime + Duration`. /// /// [`std::time::SystemTime`]: ../../std/time/struct.SystemTime.html /// /// # Examples /// /// ## `Add`able points /// /// ``` /// use std::ops::Add; /// /// #[derive(Debug, Copy, Clone, PartialEq)] /// struct Point { /// x: i32, /// y: i32, /// } /// /// impl Add for Point { /// type Output = Self; /// /// fn add(self, other: Self) -> Self { /// Self { /// x: self.x + other.x, /// y: self.y + other.y, /// } /// } /// } /// /// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 }, /// Point { x: 3, y: 3 }); /// ``` /// /// ## Implementing `Add` with generics /// /// Here is an example of the same `Point` struct implementing the `Add` trait /// using generics. /// /// ``` /// use std::ops::Add; /// /// #[derive(Debug, Copy, Clone, PartialEq)] /// struct Point { /// x: T, /// y: T, /// } /// /// // Notice that the implementation uses the associated type `Output`. /// impl> Add for Point { /// type Output = Self; /// /// fn add(self, other: Self) -> Self::Output { /// Self { /// x: self.x + other.x, /// y: self.y + other.y, /// } /// } /// } /// /// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 }, /// Point { x: 3, y: 3 }); /// ``` #[lang = "add"] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( on(all(_Self = "{integer}", Rhs = "{float}"), message = "cannot add a float to an integer",), on(all(_Self = "{float}", Rhs = "{integer}"), message = "cannot add an integer to a float",), message = "cannot add `{Rhs}` to `{Self}`", label = "no implementation for `{Self} + {Rhs}`", append_const_msg )] #[doc(alias = "+")] #[const_trait] pub trait Add { /// The resulting type after applying the `+` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `+` operation. /// /// # Example /// /// ``` /// assert_eq!(12 + 1, 13); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn add(self, rhs: Rhs) -> Self::Output; } macro_rules! add_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Add for $t { type Output = $t; #[inline] #[rustc_inherit_overflow_checks] fn add(self, other: $t) -> $t { self + other } } forward_ref_binop! { impl const Add, add for $t, $t } )*) } add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The subtraction operator `-`. /// /// Note that `Rhs` is `Self` by default, but this is not mandatory. For /// example, [`std::time::SystemTime`] implements `Sub`, which permits /// operations of the form `SystemTime = SystemTime - Duration`. /// /// [`std::time::SystemTime`]: ../../std/time/struct.SystemTime.html /// /// # Examples /// /// ## `Sub`tractable points /// /// ``` /// use std::ops::Sub; /// /// #[derive(Debug, Copy, Clone, PartialEq)] /// struct Point { /// x: i32, /// y: i32, /// } /// /// impl Sub for Point { /// type Output = Self; /// /// fn sub(self, other: Self) -> Self::Output { /// Self { /// x: self.x - other.x, /// y: self.y - other.y, /// } /// } /// } /// /// assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 }, /// Point { x: 1, y: 0 }); /// ``` /// /// ## Implementing `Sub` with generics /// /// Here is an example of the same `Point` struct implementing the `Sub` trait /// using generics. /// /// ``` /// use std::ops::Sub; /// /// #[derive(Debug, PartialEq)] /// struct Point { /// x: T, /// y: T, /// } /// /// // Notice that the implementation uses the associated type `Output`. /// impl> Sub for Point { /// type Output = Self; /// /// fn sub(self, other: Self) -> Self::Output { /// Point { /// x: self.x - other.x, /// y: self.y - other.y, /// } /// } /// } /// /// assert_eq!(Point { x: 2, y: 3 } - Point { x: 1, y: 0 }, /// Point { x: 1, y: 3 }); /// ``` #[lang = "sub"] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( message = "cannot subtract `{Rhs}` from `{Self}`", label = "no implementation for `{Self} - {Rhs}`", append_const_msg )] #[doc(alias = "-")] #[const_trait] pub trait Sub { /// The resulting type after applying the `-` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `-` operation. /// /// # Example /// /// ``` /// assert_eq!(12 - 1, 11); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn sub(self, rhs: Rhs) -> Self::Output; } macro_rules! sub_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Sub for $t { type Output = $t; #[inline] #[rustc_inherit_overflow_checks] fn sub(self, other: $t) -> $t { self - other } } forward_ref_binop! { impl const Sub, sub for $t, $t } )*) } sub_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The multiplication operator `*`. /// /// Note that `Rhs` is `Self` by default, but this is not mandatory. /// /// # Examples /// /// ## `Mul`tipliable rational numbers /// /// ``` /// use std::ops::Mul; /// /// // By the fundamental theorem of arithmetic, rational numbers in lowest /// // terms are unique. So, by keeping `Rational`s in reduced form, we can /// // derive `Eq` and `PartialEq`. /// #[derive(Debug, Eq, PartialEq)] /// struct Rational { /// numerator: usize, /// denominator: usize, /// } /// /// impl Rational { /// fn new(numerator: usize, denominator: usize) -> Self { /// if denominator == 0 { /// panic!("Zero is an invalid denominator!"); /// } /// /// // Reduce to lowest terms by dividing by the greatest common /// // divisor. /// let gcd = gcd(numerator, denominator); /// Self { /// numerator: numerator / gcd, /// denominator: denominator / gcd, /// } /// } /// } /// /// impl Mul for Rational { /// // The multiplication of rational numbers is a closed operation. /// type Output = Self; /// /// fn mul(self, rhs: Self) -> Self { /// let numerator = self.numerator * rhs.numerator; /// let denominator = self.denominator * rhs.denominator; /// Self::new(numerator, denominator) /// } /// } /// /// // Euclid's two-thousand-year-old algorithm for finding the greatest common /// // divisor. /// fn gcd(x: usize, y: usize) -> usize { /// let mut x = x; /// let mut y = y; /// while y != 0 { /// let t = y; /// y = x % y; /// x = t; /// } /// x /// } /// /// assert_eq!(Rational::new(1, 2), Rational::new(2, 4)); /// assert_eq!(Rational::new(2, 3) * Rational::new(3, 4), /// Rational::new(1, 2)); /// ``` /// /// ## Multiplying vectors by scalars as in linear algebra /// /// ``` /// use std::ops::Mul; /// /// struct Scalar { value: usize } /// /// #[derive(Debug, PartialEq)] /// struct Vector { value: Vec } /// /// impl Mul for Vector { /// type Output = Self; /// /// fn mul(self, rhs: Scalar) -> Self::Output { /// Self { value: self.value.iter().map(|v| v * rhs.value).collect() } /// } /// } /// /// let vector = Vector { value: vec![2, 4, 6] }; /// let scalar = Scalar { value: 3 }; /// assert_eq!(vector * scalar, Vector { value: vec![6, 12, 18] }); /// ``` #[lang = "mul"] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( message = "cannot multiply `{Self}` by `{Rhs}`", label = "no implementation for `{Self} * {Rhs}`" )] #[doc(alias = "*")] #[const_trait] pub trait Mul { /// The resulting type after applying the `*` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `*` operation. /// /// # Example /// /// ``` /// assert_eq!(12 * 2, 24); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn mul(self, rhs: Rhs) -> Self::Output; } macro_rules! mul_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Mul for $t { type Output = $t; #[inline] #[rustc_inherit_overflow_checks] fn mul(self, other: $t) -> $t { self * other } } forward_ref_binop! { impl const Mul, mul for $t, $t } )*) } mul_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The division operator `/`. /// /// Note that `Rhs` is `Self` by default, but this is not mandatory. /// /// # Examples /// /// ## `Div`idable rational numbers /// /// ``` /// use std::ops::Div; /// /// // By the fundamental theorem of arithmetic, rational numbers in lowest /// // terms are unique. So, by keeping `Rational`s in reduced form, we can /// // derive `Eq` and `PartialEq`. /// #[derive(Debug, Eq, PartialEq)] /// struct Rational { /// numerator: usize, /// denominator: usize, /// } /// /// impl Rational { /// fn new(numerator: usize, denominator: usize) -> Self { /// if denominator == 0 { /// panic!("Zero is an invalid denominator!"); /// } /// /// // Reduce to lowest terms by dividing by the greatest common /// // divisor. /// let gcd = gcd(numerator, denominator); /// Self { /// numerator: numerator / gcd, /// denominator: denominator / gcd, /// } /// } /// } /// /// impl Div for Rational { /// // The division of rational numbers is a closed operation. /// type Output = Self; /// /// fn div(self, rhs: Self) -> Self::Output { /// if rhs.numerator == 0 { /// panic!("Cannot divide by zero-valued `Rational`!"); /// } /// /// let numerator = self.numerator * rhs.denominator; /// let denominator = self.denominator * rhs.numerator; /// Self::new(numerator, denominator) /// } /// } /// /// // Euclid's two-thousand-year-old algorithm for finding the greatest common /// // divisor. /// fn gcd(x: usize, y: usize) -> usize { /// let mut x = x; /// let mut y = y; /// while y != 0 { /// let t = y; /// y = x % y; /// x = t; /// } /// x /// } /// /// assert_eq!(Rational::new(1, 2), Rational::new(2, 4)); /// assert_eq!(Rational::new(1, 2) / Rational::new(3, 4), /// Rational::new(2, 3)); /// ``` /// /// ## Dividing vectors by scalars as in linear algebra /// /// ``` /// use std::ops::Div; /// /// struct Scalar { value: f32 } /// /// #[derive(Debug, PartialEq)] /// struct Vector { value: Vec } /// /// impl Div for Vector { /// type Output = Self; /// /// fn div(self, rhs: Scalar) -> Self::Output { /// Self { value: self.value.iter().map(|v| v / rhs.value).collect() } /// } /// } /// /// let scalar = Scalar { value: 2f32 }; /// let vector = Vector { value: vec![2f32, 4f32, 6f32] }; /// assert_eq!(vector / scalar, Vector { value: vec![1f32, 2f32, 3f32] }); /// ``` #[lang = "div"] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( message = "cannot divide `{Self}` by `{Rhs}`", label = "no implementation for `{Self} / {Rhs}`" )] #[doc(alias = "/")] #[const_trait] pub trait Div { /// The resulting type after applying the `/` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `/` operation. /// /// # Example /// /// ``` /// assert_eq!(12 / 2, 6); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn div(self, rhs: Rhs) -> Self::Output; } macro_rules! div_impl_integer { ($(($($t:ty)*) => $panic:expr),*) => ($($( /// This operation rounds towards zero, truncating any /// fractional part of the exact result. /// /// # Panics /// #[doc = $panic] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Div for $t { type Output = $t; #[inline] fn div(self, other: $t) -> $t { self / other } } forward_ref_binop! { impl const Div, div for $t, $t } )*)*) } div_impl_integer! { (usize u8 u16 u32 u64 u128) => "This operation will panic if `other == 0`.", (isize i8 i16 i32 i64 i128) => "This operation will panic if `other == 0` or the division results in overflow." } macro_rules! div_impl_float { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Div for $t { type Output = $t; #[inline] fn div(self, other: $t) -> $t { self / other } } forward_ref_binop! { impl const Div, div for $t, $t } )*) } div_impl_float! { f32 f64 } /// The remainder operator `%`. /// /// Note that `Rhs` is `Self` by default, but this is not mandatory. /// /// # Examples /// /// This example implements `Rem` on a `SplitSlice` object. After `Rem` is /// implemented, one can use the `%` operator to find out what the remaining /// elements of the slice would be after splitting it into equal slices of a /// given length. /// /// ``` /// use std::ops::Rem; /// /// #[derive(PartialEq, Debug)] /// struct SplitSlice<'a, T: 'a> { /// slice: &'a [T], /// } /// /// impl<'a, T> Rem for SplitSlice<'a, T> { /// type Output = Self; /// /// fn rem(self, modulus: usize) -> Self::Output { /// let len = self.slice.len(); /// let rem = len % modulus; /// let start = len - rem; /// Self {slice: &self.slice[start..]} /// } /// } /// /// // If we were to divide &[0, 1, 2, 3, 4, 5, 6, 7] into slices of size 3, /// // the remainder would be &[6, 7]. /// assert_eq!(SplitSlice { slice: &[0, 1, 2, 3, 4, 5, 6, 7] } % 3, /// SplitSlice { slice: &[6, 7] }); /// ``` #[lang = "rem"] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented( message = "cannot mod `{Self}` by `{Rhs}`", label = "no implementation for `{Self} % {Rhs}`" )] #[doc(alias = "%")] #[const_trait] pub trait Rem { /// The resulting type after applying the `%` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the `%` operation. /// /// # Example /// /// ``` /// assert_eq!(12 % 10, 2); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn rem(self, rhs: Rhs) -> Self::Output; } macro_rules! rem_impl_integer { ($(($($t:ty)*) => $panic:expr),*) => ($($( /// This operation satisfies `n % d == n - (n / d) * d`. The /// result has the same sign as the left operand. /// /// # Panics /// #[doc = $panic] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Rem for $t { type Output = $t; #[inline] fn rem(self, other: $t) -> $t { self % other } } forward_ref_binop! { impl const Rem, rem for $t, $t } )*)*) } rem_impl_integer! { (usize u8 u16 u32 u64 u128) => "This operation will panic if `other == 0`.", (isize i8 i16 i32 i64 i128) => "This operation will panic if `other == 0` or if `self / other` results in overflow." } macro_rules! rem_impl_float { ($($t:ty)*) => ($( /// The remainder from the division of two floats. /// /// The remainder has the same sign as the dividend and is computed as: /// `x - (x / y).trunc() * y`. /// /// # Examples /// ``` /// let x: f32 = 50.50; /// let y: f32 = 8.125; /// let remainder = x - (x / y).trunc() * y; /// /// // The answer to both operations is 1.75 /// assert_eq!(x % y, remainder); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Rem for $t { type Output = $t; #[inline] fn rem(self, other: $t) -> $t { self % other } } forward_ref_binop! { impl const Rem, rem for $t, $t } )*) } rem_impl_float! { f32 f64 } /// The unary negation operator `-`. /// /// # Examples /// /// An implementation of `Neg` for `Sign`, which allows the use of `-` to /// negate its value. /// /// ``` /// use std::ops::Neg; /// /// #[derive(Debug, PartialEq)] /// enum Sign { /// Negative, /// Zero, /// Positive, /// } /// /// impl Neg for Sign { /// type Output = Self; /// /// fn neg(self) -> Self::Output { /// match self { /// Sign::Negative => Sign::Positive, /// Sign::Zero => Sign::Zero, /// Sign::Positive => Sign::Negative, /// } /// } /// } /// /// // A negative positive is a negative. /// assert_eq!(-Sign::Positive, Sign::Negative); /// // A double negative is a positive. /// assert_eq!(-Sign::Negative, Sign::Positive); /// // Zero is its own negation. /// assert_eq!(-Sign::Zero, Sign::Zero); /// ``` #[lang = "neg"] #[stable(feature = "rust1", since = "1.0.0")] #[doc(alias = "-")] #[const_trait] pub trait Neg { /// The resulting type after applying the `-` operator. #[stable(feature = "rust1", since = "1.0.0")] type Output; /// Performs the unary `-` operation. /// /// # Example /// /// ``` /// let x: i32 = 12; /// assert_eq!(-x, -12); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] fn neg(self) -> Self::Output; } macro_rules! neg_impl { ($($t:ty)*) => ($( #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const Neg for $t { type Output = $t; #[inline] #[rustc_inherit_overflow_checks] fn neg(self) -> $t { -self } } forward_ref_unop! { impl const Neg, neg for $t } )*) } neg_impl! { isize i8 i16 i32 i64 i128 f32 f64 } /// The addition assignment operator `+=`. /// /// # Examples /// /// This example creates a `Point` struct that implements the `AddAssign` /// trait, and then demonstrates add-assigning to a mutable `Point`. /// /// ``` /// use std::ops::AddAssign; /// /// #[derive(Debug, Copy, Clone, PartialEq)] /// struct Point { /// x: i32, /// y: i32, /// } /// /// impl AddAssign for Point { /// fn add_assign(&mut self, other: Self) { /// *self = Self { /// x: self.x + other.x, /// y: self.y + other.y, /// }; /// } /// } /// /// let mut point = Point { x: 1, y: 0 }; /// point += Point { x: 2, y: 3 }; /// assert_eq!(point, Point { x: 3, y: 3 }); /// ``` #[lang = "add_assign"] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented( message = "cannot add-assign `{Rhs}` to `{Self}`", label = "no implementation for `{Self} += {Rhs}`" )] #[doc(alias = "+")] #[doc(alias = "+=")] #[const_trait] pub trait AddAssign { /// Performs the `+=` operation. /// /// # Example /// /// ``` /// let mut x: u32 = 12; /// x += 1; /// assert_eq!(x, 13); /// ``` #[stable(feature = "op_assign_traits", since = "1.8.0")] fn add_assign(&mut self, rhs: Rhs); } macro_rules! add_assign_impl { ($($t:ty)+) => ($( #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const AddAssign for $t { #[inline] #[rustc_inherit_overflow_checks] fn add_assign(&mut self, other: $t) { *self += other } } forward_ref_op_assign! { impl const AddAssign, add_assign for $t, $t } )+) } add_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The subtraction assignment operator `-=`. /// /// # Examples /// /// This example creates a `Point` struct that implements the `SubAssign` /// trait, and then demonstrates sub-assigning to a mutable `Point`. /// /// ``` /// use std::ops::SubAssign; /// /// #[derive(Debug, Copy, Clone, PartialEq)] /// struct Point { /// x: i32, /// y: i32, /// } /// /// impl SubAssign for Point { /// fn sub_assign(&mut self, other: Self) { /// *self = Self { /// x: self.x - other.x, /// y: self.y - other.y, /// }; /// } /// } /// /// let mut point = Point { x: 3, y: 3 }; /// point -= Point { x: 2, y: 3 }; /// assert_eq!(point, Point {x: 1, y: 0}); /// ``` #[lang = "sub_assign"] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented( message = "cannot subtract-assign `{Rhs}` from `{Self}`", label = "no implementation for `{Self} -= {Rhs}`" )] #[doc(alias = "-")] #[doc(alias = "-=")] #[const_trait] pub trait SubAssign { /// Performs the `-=` operation. /// /// # Example /// /// ``` /// let mut x: u32 = 12; /// x -= 1; /// assert_eq!(x, 11); /// ``` #[stable(feature = "op_assign_traits", since = "1.8.0")] fn sub_assign(&mut self, rhs: Rhs); } macro_rules! sub_assign_impl { ($($t:ty)+) => ($( #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const SubAssign for $t { #[inline] #[rustc_inherit_overflow_checks] fn sub_assign(&mut self, other: $t) { *self -= other } } forward_ref_op_assign! { impl const SubAssign, sub_assign for $t, $t } )+) } sub_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The multiplication assignment operator `*=`. /// /// # Examples /// /// ``` /// use std::ops::MulAssign; /// /// #[derive(Debug, PartialEq)] /// struct Frequency { hertz: f64 } /// /// impl MulAssign for Frequency { /// fn mul_assign(&mut self, rhs: f64) { /// self.hertz *= rhs; /// } /// } /// /// let mut frequency = Frequency { hertz: 50.0 }; /// frequency *= 4.0; /// assert_eq!(Frequency { hertz: 200.0 }, frequency); /// ``` #[lang = "mul_assign"] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented( message = "cannot multiply-assign `{Self}` by `{Rhs}`", label = "no implementation for `{Self} *= {Rhs}`" )] #[doc(alias = "*")] #[doc(alias = "*=")] #[const_trait] pub trait MulAssign { /// Performs the `*=` operation. /// /// # Example /// /// ``` /// let mut x: u32 = 12; /// x *= 2; /// assert_eq!(x, 24); /// ``` #[stable(feature = "op_assign_traits", since = "1.8.0")] fn mul_assign(&mut self, rhs: Rhs); } macro_rules! mul_assign_impl { ($($t:ty)+) => ($( #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const MulAssign for $t { #[inline] #[rustc_inherit_overflow_checks] fn mul_assign(&mut self, other: $t) { *self *= other } } forward_ref_op_assign! { impl const MulAssign, mul_assign for $t, $t } )+) } mul_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The division assignment operator `/=`. /// /// # Examples /// /// ``` /// use std::ops::DivAssign; /// /// #[derive(Debug, PartialEq)] /// struct Frequency { hertz: f64 } /// /// impl DivAssign for Frequency { /// fn div_assign(&mut self, rhs: f64) { /// self.hertz /= rhs; /// } /// } /// /// let mut frequency = Frequency { hertz: 200.0 }; /// frequency /= 4.0; /// assert_eq!(Frequency { hertz: 50.0 }, frequency); /// ``` #[lang = "div_assign"] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented( message = "cannot divide-assign `{Self}` by `{Rhs}`", label = "no implementation for `{Self} /= {Rhs}`" )] #[doc(alias = "/")] #[doc(alias = "/=")] #[const_trait] pub trait DivAssign { /// Performs the `/=` operation. /// /// # Example /// /// ``` /// let mut x: u32 = 12; /// x /= 2; /// assert_eq!(x, 6); /// ``` #[stable(feature = "op_assign_traits", since = "1.8.0")] fn div_assign(&mut self, rhs: Rhs); } macro_rules! div_assign_impl { ($($t:ty)+) => ($( #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const DivAssign for $t { #[inline] fn div_assign(&mut self, other: $t) { *self /= other } } forward_ref_op_assign! { impl const DivAssign, div_assign for $t, $t } )+) } div_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 } /// The remainder assignment operator `%=`. /// /// # Examples /// /// ``` /// use std::ops::RemAssign; /// /// struct CookieJar { cookies: u32 } /// /// impl RemAssign for CookieJar { /// fn rem_assign(&mut self, piles: u32) { /// self.cookies %= piles; /// } /// } /// /// let mut jar = CookieJar { cookies: 31 }; /// let piles = 4; /// /// println!("Splitting up {} cookies into {} even piles!", jar.cookies, piles); /// /// jar %= piles; /// /// println!("{} cookies remain in the cookie jar!", jar.cookies); /// ``` #[lang = "rem_assign"] #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_on_unimplemented( message = "cannot mod-assign `{Self}` by `{Rhs}``", label = "no implementation for `{Self} %= {Rhs}`" )] #[doc(alias = "%")] #[doc(alias = "%=")] #[const_trait] pub trait RemAssign { /// Performs the `%=` operation. /// /// # Example /// /// ``` /// let mut x: u32 = 12; /// x %= 10; /// assert_eq!(x, 2); /// ``` #[stable(feature = "op_assign_traits", since = "1.8.0")] fn rem_assign(&mut self, rhs: Rhs); } macro_rules! rem_assign_impl { ($($t:ty)+) => ($( #[stable(feature = "op_assign_traits", since = "1.8.0")] #[rustc_const_unstable(feature = "const_ops", issue = "90080")] impl const RemAssign for $t { #[inline] fn rem_assign(&mut self, other: $t) { *self %= other } } forward_ref_op_assign! { impl const RemAssign, rem_assign for $t, $t } )+) } rem_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }