//! Error handling with the `Result` type. //! //! [`Result`][`Result`] is the type used for returning and propagating //! errors. It is an enum with the variants, [`Ok(T)`], representing //! success and containing a value, and [`Err(E)`], representing error //! and containing an error value. //! //! ``` //! # #[allow(dead_code)] //! enum Result { //! Ok(T), //! Err(E), //! } //! ``` //! //! Functions return [`Result`] whenever errors are expected and //! recoverable. In the `std` crate, [`Result`] is most prominently used //! for [I/O](../../std/io/index.html). //! //! A simple function returning [`Result`] might be //! defined and used like so: //! //! ``` //! #[derive(Debug)] //! enum Version { Version1, Version2 } //! //! fn parse_version(header: &[u8]) -> Result { //! match header.get(0) { //! None => Err("invalid header length"), //! Some(&1) => Ok(Version::Version1), //! Some(&2) => Ok(Version::Version2), //! Some(_) => Err("invalid version"), //! } //! } //! //! let version = parse_version(&[1, 2, 3, 4]); //! match version { //! Ok(v) => println!("working with version: {v:?}"), //! Err(e) => println!("error parsing header: {e:?}"), //! } //! ``` //! //! Pattern matching on [`Result`]s is clear and straightforward for //! simple cases, but [`Result`] comes with some convenience methods //! that make working with it more succinct. //! //! ``` //! let good_result: Result = Ok(10); //! let bad_result: Result = Err(10); //! //! // The `is_ok` and `is_err` methods do what they say. //! assert!(good_result.is_ok() && !good_result.is_err()); //! assert!(bad_result.is_err() && !bad_result.is_ok()); //! //! // `map` consumes the `Result` and produces another. //! let good_result: Result = good_result.map(|i| i + 1); //! let bad_result: Result = bad_result.map(|i| i - 1); //! //! // Use `and_then` to continue the computation. //! let good_result: Result = good_result.and_then(|i| Ok(i == 11)); //! //! // Use `or_else` to handle the error. //! let bad_result: Result = bad_result.or_else(|i| Ok(i + 20)); //! //! // Consume the result and return the contents with `unwrap`. //! let final_awesome_result = good_result.unwrap(); //! ``` //! //! # Results must be used //! //! A common problem with using return values to indicate errors is //! that it is easy to ignore the return value, thus failing to handle //! the error. [`Result`] is annotated with the `#[must_use]` attribute, //! which will cause the compiler to issue a warning when a Result //! value is ignored. This makes [`Result`] especially useful with //! functions that may encounter errors but don't otherwise return a //! useful value. //! //! Consider the [`write_all`] method defined for I/O types //! by the [`Write`] trait: //! //! ``` //! use std::io; //! //! trait Write { //! fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>; //! } //! ``` //! //! *Note: The actual definition of [`Write`] uses [`io::Result`], which //! is just a synonym for [Result].* //! //! This method doesn't produce a value, but the write may //! fail. It's crucial to handle the error case, and *not* write //! something like this: //! //! ```no_run //! # #![allow(unused_must_use)] // \o/ //! use std::fs::File; //! use std::io::prelude::*; //! //! let mut file = File::create("valuable_data.txt").unwrap(); //! // If `write_all` errors, then we'll never know, because the return //! // value is ignored. //! file.write_all(b"important message"); //! ``` //! //! If you *do* write that in Rust, the compiler will give you a //! warning (by default, controlled by the `unused_must_use` lint). //! //! You might instead, if you don't want to handle the error, simply //! assert success with [`expect`]. This will panic if the //! write fails, providing a marginally useful message indicating why: //! //! ```no_run //! use std::fs::File; //! use std::io::prelude::*; //! //! let mut file = File::create("valuable_data.txt").unwrap(); //! file.write_all(b"important message").expect("failed to write message"); //! ``` //! //! You might also simply assert success: //! //! ```no_run //! # use std::fs::File; //! # use std::io::prelude::*; //! # let mut file = File::create("valuable_data.txt").unwrap(); //! assert!(file.write_all(b"important message").is_ok()); //! ``` //! //! Or propagate the error up the call stack with [`?`]: //! //! ``` //! # use std::fs::File; //! # use std::io::prelude::*; //! # use std::io; //! # #[allow(dead_code)] //! fn write_message() -> io::Result<()> { //! let mut file = File::create("valuable_data.txt")?; //! file.write_all(b"important message")?; //! Ok(()) //! } //! ``` //! //! # The question mark operator, `?` //! //! When writing code that calls many functions that return the //! [`Result`] type, the error handling can be tedious. The question mark //! operator, [`?`], hides some of the boilerplate of propagating errors //! up the call stack. //! //! It replaces this: //! //! ``` //! # #![allow(dead_code)] //! use std::fs::File; //! use std::io::prelude::*; //! use std::io; //! //! struct Info { //! name: String, //! age: i32, //! rating: i32, //! } //! //! fn write_info(info: &Info) -> io::Result<()> { //! // Early return on error //! let mut file = match File::create("my_best_friends.txt") { //! Err(e) => return Err(e), //! Ok(f) => f, //! }; //! if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) { //! return Err(e) //! } //! if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) { //! return Err(e) //! } //! if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) { //! return Err(e) //! } //! Ok(()) //! } //! ``` //! //! With this: //! //! ``` //! # #![allow(dead_code)] //! use std::fs::File; //! use std::io::prelude::*; //! use std::io; //! //! struct Info { //! name: String, //! age: i32, //! rating: i32, //! } //! //! fn write_info(info: &Info) -> io::Result<()> { //! let mut file = File::create("my_best_friends.txt")?; //! // Early return on error //! file.write_all(format!("name: {}\n", info.name).as_bytes())?; //! file.write_all(format!("age: {}\n", info.age).as_bytes())?; //! file.write_all(format!("rating: {}\n", info.rating).as_bytes())?; //! Ok(()) //! } //! ``` //! //! *It's much nicer!* //! //! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result //! is [`Err`], in which case [`Err`] is returned early from the enclosing function. //! //! [`?`] can be used in functions that return [`Result`] because of the //! early return of [`Err`] that it provides. //! //! [`expect`]: Result::expect //! [`Write`]: ../../std/io/trait.Write.html "io::Write" //! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all" //! [`io::Result`]: ../../std/io/type.Result.html "io::Result" //! [`?`]: crate::ops::Try //! [`Ok(T)`]: Ok //! [`Err(E)`]: Err //! [io::Error]: ../../std/io/struct.Error.html "io::Error" //! //! # Method overview //! //! In addition to working with pattern matching, [`Result`] provides a //! wide variety of different methods. //! //! ## Querying the variant //! //! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`] //! is [`Ok`] or [`Err`], respectively. //! //! [`is_err`]: Result::is_err //! [`is_ok`]: Result::is_ok //! //! ## Adapters for working with references //! //! * [`as_ref`] converts from `&Result` to `Result<&T, &E>` //! * [`as_mut`] converts from `&mut Result` to `Result<&mut T, &mut E>` //! * [`as_deref`] converts from `&Result` to `Result<&T::Target, &E>` //! * [`as_deref_mut`] converts from `&mut Result` to //! `Result<&mut T::Target, &mut E>` //! //! [`as_deref`]: Result::as_deref //! [`as_deref_mut`]: Result::as_deref_mut //! [`as_mut`]: Result::as_mut //! [`as_ref`]: Result::as_ref //! //! ## Extracting contained values //! //! These methods extract the contained value in a [`Result`] when it //! is the [`Ok`] variant. If the [`Result`] is [`Err`]: //! //! * [`expect`] panics with a provided custom message //! * [`unwrap`] panics with a generic message //! * [`unwrap_or`] returns the provided default value //! * [`unwrap_or_default`] returns the default value of the type `T` //! (which must implement the [`Default`] trait) //! * [`unwrap_or_else`] returns the result of evaluating the provided //! function //! //! The panicking methods [`expect`] and [`unwrap`] require `E` to //! implement the [`Debug`] trait. //! //! [`Debug`]: crate::fmt::Debug //! [`expect`]: Result::expect //! [`unwrap`]: Result::unwrap //! [`unwrap_or`]: Result::unwrap_or //! [`unwrap_or_default`]: Result::unwrap_or_default //! [`unwrap_or_else`]: Result::unwrap_or_else //! //! These methods extract the contained value in a [`Result`] when it //! is the [`Err`] variant. They require `T` to implement the [`Debug`] //! trait. If the [`Result`] is [`Ok`]: //! //! * [`expect_err`] panics with a provided custom message //! * [`unwrap_err`] panics with a generic message //! //! [`Debug`]: crate::fmt::Debug //! [`expect_err`]: Result::expect_err //! [`unwrap_err`]: Result::unwrap_err //! //! ## Transforming contained values //! //! These methods transform [`Result`] to [`Option`]: //! //! * [`err`][Result::err] transforms [`Result`] into [`Option`], //! mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`] //! * [`ok`][Result::ok] transforms [`Result`] into [`Option`], //! mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`] //! * [`transpose`] transposes a [`Result`] of an [`Option`] into an //! [`Option`] of a [`Result`] //! // Do NOT add link reference definitions for `err` or `ok`, because they // will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due // to case folding. //! //! [`Err(e)`]: Err //! [`Ok(v)`]: Ok //! [`Some(e)`]: Option::Some //! [`Some(v)`]: Option::Some //! [`transpose`]: Result::transpose //! //! This method transforms the contained value of the [`Ok`] variant: //! //! * [`map`] transforms [`Result`] into [`Result`] by applying //! the provided function to the contained value of [`Ok`] and leaving //! [`Err`] values unchanged //! //! [`map`]: Result::map //! //! This method transforms the contained value of the [`Err`] variant: //! //! * [`map_err`] transforms [`Result`] into [`Result`] by //! applying the provided function to the contained value of [`Err`] and //! leaving [`Ok`] values unchanged //! //! [`map_err`]: Result::map_err //! //! These methods transform a [`Result`] into a value of a possibly //! different type `U`: //! //! * [`map_or`] applies the provided function to the contained value of //! [`Ok`], or returns the provided default value if the [`Result`] is //! [`Err`] //! * [`map_or_else`] applies the provided function to the contained value //! of [`Ok`], or applies the provided default fallback function to the //! contained value of [`Err`] //! //! [`map_or`]: Result::map_or //! [`map_or_else`]: Result::map_or_else //! //! ## Boolean operators //! //! These methods treat the [`Result`] as a boolean value, where [`Ok`] //! acts like [`true`] and [`Err`] acts like [`false`]. There are two //! categories of these methods: ones that take a [`Result`] as input, and //! ones that take a function as input (to be lazily evaluated). //! //! The [`and`] and [`or`] methods take another [`Result`] as input, and //! produce a [`Result`] as output. The [`and`] method can produce a //! [`Result`] value having a different inner type `U` than //! [`Result`]. The [`or`] method can produce a [`Result`] //! value having a different error type `F` than [`Result`]. //! //! | method | self | input | output | //! |---------|----------|-----------|----------| //! | [`and`] | `Err(e)` | (ignored) | `Err(e)` | //! | [`and`] | `Ok(x)` | `Err(d)` | `Err(d)` | //! | [`and`] | `Ok(x)` | `Ok(y)` | `Ok(y)` | //! | [`or`] | `Err(e)` | `Err(d)` | `Err(d)` | //! | [`or`] | `Err(e)` | `Ok(y)` | `Ok(y)` | //! | [`or`] | `Ok(x)` | (ignored) | `Ok(x)` | //! //! [`and`]: Result::and //! [`or`]: Result::or //! //! The [`and_then`] and [`or_else`] methods take a function as input, and //! only evaluate the function when they need to produce a new value. The //! [`and_then`] method can produce a [`Result`] value having a //! different inner type `U` than [`Result`]. The [`or_else`] method //! can produce a [`Result`] value having a different error type `F` //! than [`Result`]. //! //! | method | self | function input | function result | output | //! |--------------|----------|----------------|-----------------|----------| //! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` | //! | [`and_then`] | `Ok(x)` | `x` | `Err(d)` | `Err(d)` | //! | [`and_then`] | `Ok(x)` | `x` | `Ok(y)` | `Ok(y)` | //! | [`or_else`] | `Err(e)` | `e` | `Err(d)` | `Err(d)` | //! | [`or_else`] | `Err(e)` | `e` | `Ok(y)` | `Ok(y)` | //! | [`or_else`] | `Ok(x)` | (not provided) | (not evaluated) | `Ok(x)` | //! //! [`and_then`]: Result::and_then //! [`or_else`]: Result::or_else //! //! ## Comparison operators //! //! If `T` and `E` both implement [`PartialOrd`] then [`Result`] will //! derive its [`PartialOrd`] implementation. With this order, an [`Ok`] //! compares as less than any [`Err`], while two [`Ok`] or two [`Err`] //! compare as their contained values would in `T` or `E` respectively. If `T` //! and `E` both also implement [`Ord`], then so does [`Result`]. //! //! ``` //! assert!(Ok(1) < Err(0)); //! let x: Result = Ok(0); //! let y = Ok(1); //! assert!(x < y); //! let x: Result<(), i32> = Err(0); //! let y = Err(1); //! assert!(x < y); //! ``` //! //! ## Iterating over `Result` //! //! A [`Result`] can be iterated over. This can be helpful if you need an //! iterator that is conditionally empty. The iterator will either produce //! a single value (when the [`Result`] is [`Ok`]), or produce no values //! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like //! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the //! [`Result`] is [`Err`]. //! //! [`Ok(v)`]: Ok //! [`empty()`]: crate::iter::empty //! [`once(v)`]: crate::iter::once //! //! Iterators over [`Result`] come in three types: //! //! * [`into_iter`] consumes the [`Result`] and produces the contained //! value //! * [`iter`] produces an immutable reference of type `&T` to the //! contained value //! * [`iter_mut`] produces a mutable reference of type `&mut T` to the //! contained value //! //! See [Iterating over `Option`] for examples of how this can be useful. //! //! [Iterating over `Option`]: crate::option#iterating-over-option //! [`into_iter`]: Result::into_iter //! [`iter`]: Result::iter //! [`iter_mut`]: Result::iter_mut //! //! You might want to use an iterator chain to do multiple instances of an //! operation that can fail, but would like to ignore failures while //! continuing to process the successful results. In this example, we take //! advantage of the iterable nature of [`Result`] to select only the //! [`Ok`] values using [`flatten`][Iterator::flatten]. //! //! ``` //! # use std::str::FromStr; //! let mut results = vec![]; //! let mut errs = vec![]; //! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"] //! .into_iter() //! .map(u8::from_str) //! // Save clones of the raw `Result` values to inspect //! .inspect(|x| results.push(x.clone())) //! // Challenge: explain how this captures only the `Err` values //! .inspect(|x| errs.extend(x.clone().err())) //! .flatten() //! .collect(); //! assert_eq!(errs.len(), 3); //! assert_eq!(nums, [17, 99]); //! println!("results {results:?}"); //! println!("errs {errs:?}"); //! println!("nums {nums:?}"); //! ``` //! //! ## Collecting into `Result` //! //! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait, //! which allows an iterator over [`Result`] values to be collected into a //! [`Result`] of a collection of each contained value of the original //! [`Result`] values, or [`Err`] if any of the elements was [`Err`]. //! //! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E //! //! ``` //! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)]; //! let res: Result, &str> = v.into_iter().collect(); //! assert_eq!(res, Err("err!")); //! let v = [Ok(2), Ok(4), Ok(8)]; //! let res: Result, &str> = v.into_iter().collect(); //! assert_eq!(res, Ok(vec![2, 4, 8])); //! ``` //! //! [`Result`] also implements the [`Product`][impl-Product] and //! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values //! to provide the [`product`][Iterator::product] and //! [`sum`][Iterator::sum] methods. //! //! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E //! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E //! //! ``` //! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")]; //! let res: Result = v.into_iter().sum(); //! assert_eq!(res, Err("error!")); //! let v = [Ok(1), Ok(2), Ok(21)]; //! let res: Result = v.into_iter().product(); //! assert_eq!(res, Ok(42)); //! ``` #![stable(feature = "rust1", since = "1.0.0")] use crate::iter::{self, FromIterator, FusedIterator, TrustedLen}; use crate::marker::Destruct; use crate::ops::{self, ControlFlow, Deref, DerefMut}; use crate::{convert, fmt, hint}; /// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]). /// /// See the [module documentation](self) for details. #[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)] #[must_use = "this `Result` may be an `Err` variant, which should be handled"] #[rustc_diagnostic_item = "Result"] #[stable(feature = "rust1", since = "1.0.0")] pub enum Result { /// Contains the success value #[lang = "Ok"] #[stable(feature = "rust1", since = "1.0.0")] Ok(#[stable(feature = "rust1", since = "1.0.0")] T), /// Contains the error value #[lang = "Err"] #[stable(feature = "rust1", since = "1.0.0")] Err(#[stable(feature = "rust1", since = "1.0.0")] E), } ///////////////////////////////////////////////////////////////////////////// // Type implementation ///////////////////////////////////////////////////////////////////////////// impl Result { ///////////////////////////////////////////////////////////////////////// // Querying the contained values ///////////////////////////////////////////////////////////////////////// /// Returns `true` if the result is [`Ok`]. /// /// # Examples /// /// ``` /// let x: Result = Ok(-3); /// assert_eq!(x.is_ok(), true); /// /// let x: Result = Err("Some error message"); /// assert_eq!(x.is_ok(), false); /// ``` #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"] #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")] #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub const fn is_ok(&self) -> bool { matches!(*self, Ok(_)) } /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate. /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.is_ok_and(|x| x > 1), true); /// /// let x: Result = Ok(0); /// assert_eq!(x.is_ok_and(|x| x > 1), false); /// /// let x: Result = Err("hey"); /// assert_eq!(x.is_ok_and(|x| x > 1), false); /// ``` #[must_use] #[inline] #[stable(feature = "is_some_and", since = "1.70.0")] pub fn is_ok_and(self, f: impl FnOnce(T) -> bool) -> bool { match self { Err(_) => false, Ok(x) => f(x), } } /// Returns `true` if the result is [`Err`]. /// /// # Examples /// /// ``` /// let x: Result = Ok(-3); /// assert_eq!(x.is_err(), false); /// /// let x: Result = Err("Some error message"); /// assert_eq!(x.is_err(), true); /// ``` #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"] #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")] #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub const fn is_err(&self) -> bool { !self.is_ok() } /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate. /// /// # Examples /// /// ``` /// use std::io::{Error, ErrorKind}; /// /// let x: Result = Err(Error::new(ErrorKind::NotFound, "!")); /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true); /// /// let x: Result = Err(Error::new(ErrorKind::PermissionDenied, "!")); /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false); /// /// let x: Result = Ok(123); /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false); /// ``` #[must_use] #[inline] #[stable(feature = "is_some_and", since = "1.70.0")] pub fn is_err_and(self, f: impl FnOnce(E) -> bool) -> bool { match self { Ok(_) => false, Err(e) => f(e), } } ///////////////////////////////////////////////////////////////////////// // Adapter for each variant ///////////////////////////////////////////////////////////////////////// /// Converts from `Result` to [`Option`]. /// /// Converts `self` into an [`Option`], consuming `self`, /// and discarding the error, if any. /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.ok(), Some(2)); /// /// let x: Result = Err("Nothing here"); /// assert_eq!(x.ok(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")] pub const fn ok(self) -> Option where E: ~const Destruct, { match self { Ok(x) => Some(x), // FIXME: ~const Drop doesn't quite work right yet #[allow(unused_variables)] Err(x) => None, } } /// Converts from `Result` to [`Option`]. /// /// Converts `self` into an [`Option`], consuming `self`, /// and discarding the success value, if any. /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.err(), None); /// /// let x: Result = Err("Nothing here"); /// assert_eq!(x.err(), Some("Nothing here")); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")] pub const fn err(self) -> Option where T: ~const Destruct, { match self { // FIXME: ~const Drop doesn't quite work right yet #[allow(unused_variables)] Ok(x) => None, Err(x) => Some(x), } } ///////////////////////////////////////////////////////////////////////// // Adapter for working with references ///////////////////////////////////////////////////////////////////////// /// Converts from `&Result` to `Result<&T, &E>`. /// /// Produces a new `Result`, containing a reference /// into the original, leaving the original in place. /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.as_ref(), Ok(&2)); /// /// let x: Result = Err("Error"); /// assert_eq!(x.as_ref(), Err(&"Error")); /// ``` #[inline] #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")] #[stable(feature = "rust1", since = "1.0.0")] pub const fn as_ref(&self) -> Result<&T, &E> { match *self { Ok(ref x) => Ok(x), Err(ref x) => Err(x), } } /// Converts from `&mut Result` to `Result<&mut T, &mut E>`. /// /// # Examples /// /// ``` /// fn mutate(r: &mut Result) { /// match r.as_mut() { /// Ok(v) => *v = 42, /// Err(e) => *e = 0, /// } /// } /// /// let mut x: Result = Ok(2); /// mutate(&mut x); /// assert_eq!(x.unwrap(), 42); /// /// let mut x: Result = Err(13); /// mutate(&mut x); /// assert_eq!(x.unwrap_err(), 0); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_result", issue = "82814")] pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> { match *self { Ok(ref mut x) => Ok(x), Err(ref mut x) => Err(x), } } ///////////////////////////////////////////////////////////////////////// // Transforming contained values ///////////////////////////////////////////////////////////////////////// /// Maps a `Result` to `Result` by applying a function to a /// contained [`Ok`] value, leaving an [`Err`] value untouched. /// /// This function can be used to compose the results of two functions. /// /// # Examples /// /// Print the numbers on each line of a string multiplied by two. /// /// ``` /// let line = "1\n2\n3\n4\n"; /// /// for num in line.lines() { /// match num.parse::().map(|i| i * 2) { /// Ok(n) => println!("{n}"), /// Err(..) => {} /// } /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map U>(self, op: F) -> Result { match self { Ok(t) => Ok(op(t)), Err(e) => Err(e), } } /// Returns the provided default (if [`Err`]), or /// applies a function to the contained value (if [`Ok`]), /// /// Arguments passed to `map_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`map_or_else`], /// which is lazily evaluated. /// /// [`map_or_else`]: Result::map_or_else /// /// # Examples /// /// ``` /// let x: Result<_, &str> = Ok("foo"); /// assert_eq!(x.map_or(42, |v| v.len()), 3); /// /// let x: Result<&str, _> = Err("bar"); /// assert_eq!(x.map_or(42, |v| v.len()), 42); /// ``` #[inline] #[stable(feature = "result_map_or", since = "1.41.0")] pub fn map_or U>(self, default: U, f: F) -> U { match self { Ok(t) => f(t), Err(_) => default, } } /// Maps a `Result` to `U` by applying fallback function `default` to /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value. /// /// This function can be used to unpack a successful result /// while handling an error. /// /// /// # Examples /// /// ``` /// let k = 21; /// /// let x : Result<_, &str> = Ok("foo"); /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3); /// /// let x : Result<&str, _> = Err("bar"); /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42); /// ``` #[inline] #[stable(feature = "result_map_or_else", since = "1.41.0")] pub fn map_or_else U, F: FnOnce(T) -> U>(self, default: D, f: F) -> U { match self { Ok(t) => f(t), Err(e) => default(e), } } /// Maps a `Result` to `Result` by applying a function to a /// contained [`Err`] value, leaving an [`Ok`] value untouched. /// /// This function can be used to pass through a successful result while handling /// an error. /// /// /// # Examples /// /// ``` /// fn stringify(x: u32) -> String { format!("error code: {x}") } /// /// let x: Result = Ok(2); /// assert_eq!(x.map_err(stringify), Ok(2)); /// /// let x: Result = Err(13); /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string())); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn map_err F>(self, op: O) -> Result { match self { Ok(t) => Ok(t), Err(e) => Err(op(e)), } } /// Calls the provided closure with a reference to the contained value (if [`Ok`]). /// /// # Examples /// /// ``` /// #![feature(result_option_inspect)] /// /// let x: u8 = "4" /// .parse::() /// .inspect(|x| println!("original: {x}")) /// .map(|x| x.pow(3)) /// .expect("failed to parse number"); /// ``` #[inline] #[unstable(feature = "result_option_inspect", issue = "91345")] pub fn inspect(self, f: F) -> Self { if let Ok(ref t) = self { f(t); } self } /// Calls the provided closure with a reference to the contained error (if [`Err`]). /// /// # Examples /// /// ``` /// #![feature(result_option_inspect)] /// /// use std::{fs, io}; /// /// fn read() -> io::Result { /// fs::read_to_string("address.txt") /// .inspect_err(|e| eprintln!("failed to read file: {e}")) /// } /// ``` #[inline] #[unstable(feature = "result_option_inspect", issue = "91345")] pub fn inspect_err(self, f: F) -> Self { if let Err(ref e) = self { f(e); } self } /// Converts from `Result` (or `&Result`) to `Result<&::Target, &E>`. /// /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref) /// and returns the new [`Result`]. /// /// # Examples /// /// ``` /// let x: Result = Ok("hello".to_string()); /// let y: Result<&str, &u32> = Ok("hello"); /// assert_eq!(x.as_deref(), y); /// /// let x: Result = Err(42); /// let y: Result<&str, &u32> = Err(&42); /// assert_eq!(x.as_deref(), y); /// ``` #[inline] #[stable(feature = "inner_deref", since = "1.47.0")] pub fn as_deref(&self) -> Result<&T::Target, &E> where T: Deref, { self.as_ref().map(|t| t.deref()) } /// Converts from `Result` (or `&mut Result`) to `Result<&mut ::Target, &mut E>`. /// /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut) /// and returns the new [`Result`]. /// /// # Examples /// /// ``` /// let mut s = "HELLO".to_string(); /// let mut x: Result = Ok("hello".to_string()); /// let y: Result<&mut str, &mut u32> = Ok(&mut s); /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y); /// /// let mut i = 42; /// let mut x: Result = Err(42); /// let y: Result<&mut str, &mut u32> = Err(&mut i); /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y); /// ``` #[inline] #[stable(feature = "inner_deref", since = "1.47.0")] pub fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E> where T: DerefMut, { self.as_mut().map(|t| t.deref_mut()) } ///////////////////////////////////////////////////////////////////////// // Iterator constructors ///////////////////////////////////////////////////////////////////////// /// Returns an iterator over the possibly contained value. /// /// The iterator yields one value if the result is [`Result::Ok`], otherwise none. /// /// # Examples /// /// ``` /// let x: Result = Ok(7); /// assert_eq!(x.iter().next(), Some(&7)); /// /// let x: Result = Err("nothing!"); /// assert_eq!(x.iter().next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<'_, T> { Iter { inner: self.as_ref().ok() } } /// Returns a mutable iterator over the possibly contained value. /// /// The iterator yields one value if the result is [`Result::Ok`], otherwise none. /// /// # Examples /// /// ``` /// let mut x: Result = Ok(7); /// match x.iter_mut().next() { /// Some(v) => *v = 40, /// None => {}, /// } /// assert_eq!(x, Ok(40)); /// /// let mut x: Result = Err("nothing!"); /// assert_eq!(x.iter_mut().next(), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut<'_, T> { IterMut { inner: self.as_mut().ok() } } ///////////////////////////////////////////////////////////////////////// // Extract a value ///////////////////////////////////////////////////////////////////////// /// Returns the contained [`Ok`] value, consuming the `self` value. /// /// Because this function may panic, its use is generally discouraged. /// Instead, prefer to use pattern matching and handle the [`Err`] /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or /// [`unwrap_or_default`]. /// /// [`unwrap_or`]: Result::unwrap_or /// [`unwrap_or_else`]: Result::unwrap_or_else /// [`unwrap_or_default`]: Result::unwrap_or_default /// /// # Panics /// /// Panics if the value is an [`Err`], with a panic message including the /// passed message, and the content of the [`Err`]. /// /// /// # Examples /// /// ```should_panic /// let x: Result = Err("emergency failure"); /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure` /// ``` /// /// # Recommended Message Style /// /// We recommend that `expect` messages are used to describe the reason you /// _expect_ the `Result` should be `Ok`. /// /// ```should_panic /// let path = std::env::var("IMPORTANT_PATH") /// .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`"); /// ``` /// /// **Hint**: If you're having trouble remembering how to phrase expect /// error messages remember to focus on the word "should" as in "env /// variable should be set by blah" or "the given binary should be available /// and executable by the current user". /// /// For more detail on expect message styles and the reasoning behind our recommendation please /// refer to the section on ["Common Message /// Styles"](../../std/error/index.html#common-message-styles) in the /// [`std::error`](../../std/error/index.html) module docs. #[inline] #[track_caller] #[stable(feature = "result_expect", since = "1.4.0")] pub fn expect(self, msg: &str) -> T where E: fmt::Debug, { match self { Ok(t) => t, Err(e) => unwrap_failed(msg, &e), } } /// Returns the contained [`Ok`] value, consuming the `self` value. /// /// Because this function may panic, its use is generally discouraged. /// Instead, prefer to use pattern matching and handle the [`Err`] /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or /// [`unwrap_or_default`]. /// /// [`unwrap_or`]: Result::unwrap_or /// [`unwrap_or_else`]: Result::unwrap_or_else /// [`unwrap_or_default`]: Result::unwrap_or_default /// /// # Panics /// /// Panics if the value is an [`Err`], with a panic message provided by the /// [`Err`]'s value. /// /// /// # Examples /// /// Basic usage: /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(x.unwrap(), 2); /// ``` /// /// ```should_panic /// let x: Result = Err("emergency failure"); /// x.unwrap(); // panics with `emergency failure` /// ``` #[inline] #[track_caller] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap(self) -> T where E: fmt::Debug, { match self { Ok(t) => t, Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e), } } /// Returns the contained [`Ok`] value or a default /// /// Consumes the `self` argument then, if [`Ok`], returns the contained /// value, otherwise if [`Err`], returns the default value for that /// type. /// /// # Examples /// /// Converts a string to an integer, turning poorly-formed strings /// into 0 (the default value for integers). [`parse`] converts /// a string to any other type that implements [`FromStr`], returning an /// [`Err`] on error. /// /// ``` /// let good_year_from_input = "1909"; /// let bad_year_from_input = "190blarg"; /// let good_year = good_year_from_input.parse().unwrap_or_default(); /// let bad_year = bad_year_from_input.parse().unwrap_or_default(); /// /// assert_eq!(1909, good_year); /// assert_eq!(0, bad_year); /// ``` /// /// [`parse`]: str::parse /// [`FromStr`]: crate::str::FromStr #[inline] #[stable(feature = "result_unwrap_or_default", since = "1.16.0")] pub fn unwrap_or_default(self) -> T where T: Default, { match self { Ok(x) => x, Err(_) => Default::default(), } } /// Returns the contained [`Err`] value, consuming the `self` value. /// /// # Panics /// /// Panics if the value is an [`Ok`], with a panic message including the /// passed message, and the content of the [`Ok`]. /// /// /// # Examples /// /// ```should_panic /// let x: Result = Ok(10); /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10` /// ``` #[inline] #[track_caller] #[stable(feature = "result_expect_err", since = "1.17.0")] pub fn expect_err(self, msg: &str) -> E where T: fmt::Debug, { match self { Ok(t) => unwrap_failed(msg, &t), Err(e) => e, } } /// Returns the contained [`Err`] value, consuming the `self` value. /// /// # Panics /// /// Panics if the value is an [`Ok`], with a custom panic message provided /// by the [`Ok`]'s value. /// /// # Examples /// /// ```should_panic /// let x: Result = Ok(2); /// x.unwrap_err(); // panics with `2` /// ``` /// /// ``` /// let x: Result = Err("emergency failure"); /// assert_eq!(x.unwrap_err(), "emergency failure"); /// ``` #[inline] #[track_caller] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_err(self) -> E where T: fmt::Debug, { match self { Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t), Err(e) => e, } } /// Returns the contained [`Ok`] value, but never panics. /// /// Unlike [`unwrap`], this method is known to never panic on the /// result types it is implemented for. Therefore, it can be used /// instead of `unwrap` as a maintainability safeguard that will fail /// to compile if the error type of the `Result` is later changed /// to an error that can actually occur. /// /// [`unwrap`]: Result::unwrap /// /// # Examples /// /// ``` /// # #![feature(never_type)] /// # #![feature(unwrap_infallible)] /// /// fn only_good_news() -> Result { /// Ok("this is fine".into()) /// } /// /// let s: String = only_good_news().into_ok(); /// println!("{s}"); /// ``` #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")] #[inline] pub fn into_ok(self) -> T where E: Into, { match self { Ok(x) => x, Err(e) => e.into(), } } /// Returns the contained [`Err`] value, but never panics. /// /// Unlike [`unwrap_err`], this method is known to never panic on the /// result types it is implemented for. Therefore, it can be used /// instead of `unwrap_err` as a maintainability safeguard that will fail /// to compile if the ok type of the `Result` is later changed /// to a type that can actually occur. /// /// [`unwrap_err`]: Result::unwrap_err /// /// # Examples /// /// ``` /// # #![feature(never_type)] /// # #![feature(unwrap_infallible)] /// /// fn only_bad_news() -> Result { /// Err("Oops, it failed".into()) /// } /// /// let error: String = only_bad_news().into_err(); /// println!("{error}"); /// ``` #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")] #[inline] pub fn into_err(self) -> E where T: Into, { match self { Ok(x) => x.into(), Err(e) => e, } } //////////////////////////////////////////////////////////////////////// // Boolean operations on the values, eager and lazy ///////////////////////////////////////////////////////////////////////// /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`. /// /// Arguments passed to `and` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`and_then`], which is /// lazily evaluated. /// /// [`and_then`]: Result::and_then /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// let y: Result<&str, &str> = Err("late error"); /// assert_eq!(x.and(y), Err("late error")); /// /// let x: Result = Err("early error"); /// let y: Result<&str, &str> = Ok("foo"); /// assert_eq!(x.and(y), Err("early error")); /// /// let x: Result = Err("not a 2"); /// let y: Result<&str, &str> = Err("late error"); /// assert_eq!(x.and(y), Err("not a 2")); /// /// let x: Result = Ok(2); /// let y: Result<&str, &str> = Ok("different result type"); /// assert_eq!(x.and(y), Ok("different result type")); /// ``` #[inline] #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")] #[stable(feature = "rust1", since = "1.0.0")] pub const fn and(self, res: Result) -> Result where T: ~const Destruct, U: ~const Destruct, E: ~const Destruct, { match self { // FIXME: ~const Drop doesn't quite work right yet #[allow(unused_variables)] Ok(x) => res, Err(e) => Err(e), } } /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`. /// /// /// This function can be used for control flow based on `Result` values. /// /// # Examples /// /// ``` /// fn sq_then_to_string(x: u32) -> Result { /// x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed") /// } /// /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string())); /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed")); /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number")); /// ``` /// /// Often used to chain fallible operations that may return [`Err`]. /// /// ``` /// use std::{io::ErrorKind, path::Path}; /// /// // Note: on Windows "/" maps to "C:\" /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified()); /// assert!(root_modified_time.is_ok()); /// /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified()); /// assert!(should_fail.is_err()); /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn and_then Result>(self, op: F) -> Result { match self { Ok(t) => op(t), Err(e) => Err(e), } } /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`. /// /// Arguments passed to `or` are eagerly evaluated; if you are passing the /// result of a function call, it is recommended to use [`or_else`], which is /// lazily evaluated. /// /// [`or_else`]: Result::or_else /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// let y: Result = Err("late error"); /// assert_eq!(x.or(y), Ok(2)); /// /// let x: Result = Err("early error"); /// let y: Result = Ok(2); /// assert_eq!(x.or(y), Ok(2)); /// /// let x: Result = Err("not a 2"); /// let y: Result = Err("late error"); /// assert_eq!(x.or(y), Err("late error")); /// /// let x: Result = Ok(2); /// let y: Result = Ok(100); /// assert_eq!(x.or(y), Ok(2)); /// ``` #[inline] #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")] #[stable(feature = "rust1", since = "1.0.0")] pub const fn or(self, res: Result) -> Result where T: ~const Destruct, E: ~const Destruct, F: ~const Destruct, { match self { Ok(v) => Ok(v), // FIXME: ~const Drop doesn't quite work right yet #[allow(unused_variables)] Err(e) => res, } } /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`. /// /// This function can be used for control flow based on result values. /// /// /// # Examples /// /// ``` /// fn sq(x: u32) -> Result { Ok(x * x) } /// fn err(x: u32) -> Result { Err(x) } /// /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2)); /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2)); /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9)); /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3)); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or_else Result>(self, op: O) -> Result { match self { Ok(t) => Ok(t), Err(e) => op(e), } } /// Returns the contained [`Ok`] value or a provided default. /// /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing /// the result of a function call, it is recommended to use [`unwrap_or_else`], /// which is lazily evaluated. /// /// [`unwrap_or_else`]: Result::unwrap_or_else /// /// # Examples /// /// ``` /// let default = 2; /// let x: Result = Ok(9); /// assert_eq!(x.unwrap_or(default), 9); /// /// let x: Result = Err("error"); /// assert_eq!(x.unwrap_or(default), default); /// ``` #[inline] #[rustc_const_unstable(feature = "const_result_drop", issue = "92384")] #[stable(feature = "rust1", since = "1.0.0")] pub const fn unwrap_or(self, default: T) -> T where T: ~const Destruct, E: ~const Destruct, { match self { Ok(t) => t, // FIXME: ~const Drop doesn't quite work right yet #[allow(unused_variables)] Err(e) => default, } } /// Returns the contained [`Ok`] value or computes it from a closure. /// /// /// # Examples /// /// ``` /// fn count(x: &str) -> usize { x.len() } /// /// assert_eq!(Ok(2).unwrap_or_else(count), 2); /// assert_eq!(Err("foo").unwrap_or_else(count), 3); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn unwrap_or_else T>(self, op: F) -> T { match self { Ok(t) => t, Err(e) => op(e), } } /// Returns the contained [`Ok`] value, consuming the `self` value, /// without checking that the value is not an [`Err`]. /// /// # Safety /// /// Calling this method on an [`Err`] is *[undefined behavior]*. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// /// # Examples /// /// ``` /// let x: Result = Ok(2); /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2); /// ``` /// /// ```no_run /// let x: Result = Err("emergency failure"); /// unsafe { x.unwrap_unchecked(); } // Undefined behavior! /// ``` #[inline] #[track_caller] #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")] pub unsafe fn unwrap_unchecked(self) -> T { debug_assert!(self.is_ok()); match self { Ok(t) => t, // SAFETY: the safety contract must be upheld by the caller. Err(_) => unsafe { hint::unreachable_unchecked() }, } } /// Returns the contained [`Err`] value, consuming the `self` value, /// without checking that the value is not an [`Ok`]. /// /// # Safety /// /// Calling this method on an [`Ok`] is *[undefined behavior]*. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// /// # Examples /// /// ```no_run /// let x: Result = Ok(2); /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior! /// ``` /// /// ``` /// let x: Result = Err("emergency failure"); /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure"); /// ``` #[inline] #[track_caller] #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")] pub unsafe fn unwrap_err_unchecked(self) -> E { debug_assert!(self.is_err()); match self { // SAFETY: the safety contract must be upheld by the caller. Ok(_) => unsafe { hint::unreachable_unchecked() }, Err(e) => e, } } } impl Result<&T, E> { /// Maps a `Result<&T, E>` to a `Result` by copying the contents of the /// `Ok` part. /// /// # Examples /// /// ``` /// let val = 12; /// let x: Result<&i32, i32> = Ok(&val); /// assert_eq!(x, Ok(&12)); /// let copied = x.copied(); /// assert_eq!(copied, Ok(12)); /// ``` #[inline] #[stable(feature = "result_copied", since = "1.59.0")] pub fn copied(self) -> Result where T: Copy, { self.map(|&t| t) } /// Maps a `Result<&T, E>` to a `Result` by cloning the contents of the /// `Ok` part. /// /// # Examples /// /// ``` /// let val = 12; /// let x: Result<&i32, i32> = Ok(&val); /// assert_eq!(x, Ok(&12)); /// let cloned = x.cloned(); /// assert_eq!(cloned, Ok(12)); /// ``` #[inline] #[stable(feature = "result_cloned", since = "1.59.0")] pub fn cloned(self) -> Result where T: Clone, { self.map(|t| t.clone()) } } impl Result<&mut T, E> { /// Maps a `Result<&mut T, E>` to a `Result` by copying the contents of the /// `Ok` part. /// /// # Examples /// /// ``` /// let mut val = 12; /// let x: Result<&mut i32, i32> = Ok(&mut val); /// assert_eq!(x, Ok(&mut 12)); /// let copied = x.copied(); /// assert_eq!(copied, Ok(12)); /// ``` #[inline] #[stable(feature = "result_copied", since = "1.59.0")] pub fn copied(self) -> Result where T: Copy, { self.map(|&mut t| t) } /// Maps a `Result<&mut T, E>` to a `Result` by cloning the contents of the /// `Ok` part. /// /// # Examples /// /// ``` /// let mut val = 12; /// let x: Result<&mut i32, i32> = Ok(&mut val); /// assert_eq!(x, Ok(&mut 12)); /// let cloned = x.cloned(); /// assert_eq!(cloned, Ok(12)); /// ``` #[inline] #[stable(feature = "result_cloned", since = "1.59.0")] pub fn cloned(self) -> Result where T: Clone, { self.map(|t| t.clone()) } } impl Result, E> { /// Transposes a `Result` of an `Option` into an `Option` of a `Result`. /// /// `Ok(None)` will be mapped to `None`. /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`. /// /// # Examples /// /// ``` /// #[derive(Debug, Eq, PartialEq)] /// struct SomeErr; /// /// let x: Result, SomeErr> = Ok(Some(5)); /// let y: Option> = Some(Ok(5)); /// assert_eq!(x.transpose(), y); /// ``` #[inline] #[stable(feature = "transpose_result", since = "1.33.0")] #[rustc_const_unstable(feature = "const_result", issue = "82814")] pub const fn transpose(self) -> Option> { match self { Ok(Some(x)) => Some(Ok(x)), Ok(None) => None, Err(e) => Some(Err(e)), } } } impl Result, E> { /// Converts from `Result, E>` to `Result` /// /// # Examples /// /// ``` /// #![feature(result_flattening)] /// let x: Result, u32> = Ok(Ok("hello")); /// assert_eq!(Ok("hello"), x.flatten()); /// /// let x: Result, u32> = Ok(Err(6)); /// assert_eq!(Err(6), x.flatten()); /// /// let x: Result, u32> = Err(6); /// assert_eq!(Err(6), x.flatten()); /// ``` /// /// Flattening only removes one level of nesting at a time: /// /// ``` /// #![feature(result_flattening)] /// let x: Result, u32>, u32> = Ok(Ok(Ok("hello"))); /// assert_eq!(Ok(Ok("hello")), x.flatten()); /// assert_eq!(Ok("hello"), x.flatten().flatten()); /// ``` #[inline] #[unstable(feature = "result_flattening", issue = "70142")] pub fn flatten(self) -> Result { self.and_then(convert::identity) } } // This is a separate function to reduce the code size of the methods #[cfg(not(feature = "panic_immediate_abort"))] #[inline(never)] #[cold] #[track_caller] fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! { panic!("{msg}: {error:?}") } // This is a separate function to avoid constructing a `dyn Debug` // that gets immediately thrown away, since vtables don't get cleaned up // by dead code elimination if a trait object is constructed even if it goes // unused #[cfg(feature = "panic_immediate_abort")] #[inline] #[cold] #[track_caller] fn unwrap_failed(_msg: &str, _error: &T) -> ! { panic!() } ///////////////////////////////////////////////////////////////////////////// // Trait implementations ///////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_clone", issue = "91805")] impl const Clone for Result where T: ~const Clone + ~const Destruct, E: ~const Clone + ~const Destruct, { #[inline] fn clone(&self) -> Self { match self { Ok(x) => Ok(x.clone()), Err(x) => Err(x.clone()), } } #[inline] fn clone_from(&mut self, source: &Self) { match (self, source) { (Ok(to), Ok(from)) => to.clone_from(from), (Err(to), Err(from)) => to.clone_from(from), (to, from) => *to = from.clone(), } } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for Result { type Item = T; type IntoIter = IntoIter; /// Returns a consuming iterator over the possibly contained value. /// /// The iterator yields one value if the result is [`Result::Ok`], otherwise none. /// /// # Examples /// /// ``` /// let x: Result = Ok(5); /// let v: Vec = x.into_iter().collect(); /// assert_eq!(v, [5]); /// /// let x: Result = Err("nothing!"); /// let v: Vec = x.into_iter().collect(); /// assert_eq!(v, []); /// ``` #[inline] fn into_iter(self) -> IntoIter { IntoIter { inner: self.ok() } } } #[stable(since = "1.4.0", feature = "result_iter")] impl<'a, T, E> IntoIterator for &'a Result { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } #[stable(since = "1.4.0", feature = "result_iter")] impl<'a, T, E> IntoIterator for &'a mut Result { type Item = &'a mut T; type IntoIter = IterMut<'a, T>; fn into_iter(self) -> IterMut<'a, T> { self.iter_mut() } } ///////////////////////////////////////////////////////////////////////////// // The Result Iterators ///////////////////////////////////////////////////////////////////////////// /// An iterator over a reference to the [`Ok`] variant of a [`Result`]. /// /// The iterator yields one value if the result is [`Ok`], otherwise none. /// /// Created by [`Result::iter`]. #[derive(Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, T: 'a> { inner: Option<&'a T>, } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; #[inline] fn next(&mut self) -> Option<&'a T> { self.inner.take() } #[inline] fn size_hint(&self) -> (usize, Option) { let n = if self.inner.is_some() { 1 } else { 0 }; (n, Some(n)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for Iter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a T> { self.inner.take() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Iter<'_, T> {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Iter<'_, T> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for Iter<'_, A> {} #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Iter<'_, T> { #[inline] fn clone(&self) -> Self { Iter { inner: self.inner } } } /// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`]. /// /// Created by [`Result::iter_mut`]. #[derive(Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct IterMut<'a, T: 'a> { inner: Option<&'a mut T>, } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for IterMut<'a, T> { type Item = &'a mut T; #[inline] fn next(&mut self) -> Option<&'a mut T> { self.inner.take() } #[inline] fn size_hint(&self) -> (usize, Option) { let n = if self.inner.is_some() { 1 } else { 0 }; (n, Some(n)) } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for IterMut<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a mut T> { self.inner.take() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IterMut<'_, T> {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IterMut<'_, T> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for IterMut<'_, A> {} /// An iterator over the value in a [`Ok`] variant of a [`Result`]. /// /// The iterator yields one value if the result is [`Ok`], otherwise none. /// /// This struct is created by the [`into_iter`] method on /// [`Result`] (provided by the [`IntoIterator`] trait). /// /// [`into_iter`]: IntoIterator::into_iter #[derive(Clone, Debug)] #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { inner: Option, } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = T; #[inline] fn next(&mut self) -> Option { self.inner.take() } #[inline] fn size_hint(&self) -> (usize, Option) { let n = if self.inner.is_some() { 1 } else { 0 }; (n, Some(n)) } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.inner.take() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter {} #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IntoIter {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for IntoIter {} ///////////////////////////////////////////////////////////////////////////// // FromIterator ///////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl> FromIterator> for Result { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, a /// container with the values of each `Result` is returned. /// /// Here is an example which increments every integer in a vector, /// checking for overflow: /// /// ``` /// let v = vec![1, 2]; /// let res: Result, &'static str> = v.iter().map(|x: &u32| /// x.checked_add(1).ok_or("Overflow!") /// ).collect(); /// assert_eq!(res, Ok(vec![2, 3])); /// ``` /// /// Here is another example that tries to subtract one from another list /// of integers, this time checking for underflow: /// /// ``` /// let v = vec![1, 2, 0]; /// let res: Result, &'static str> = v.iter().map(|x: &u32| /// x.checked_sub(1).ok_or("Underflow!") /// ).collect(); /// assert_eq!(res, Err("Underflow!")); /// ``` /// /// Here is a variation on the previous example, showing that no /// further elements are taken from `iter` after the first `Err`. /// /// ``` /// let v = vec![3, 2, 1, 10]; /// let mut shared = 0; /// let res: Result, &'static str> = v.iter().map(|x: &u32| { /// shared += x; /// x.checked_sub(2).ok_or("Underflow!") /// }).collect(); /// assert_eq!(res, Err("Underflow!")); /// assert_eq!(shared, 6); /// ``` /// /// Since the third element caused an underflow, no further elements were taken, /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16. #[inline] fn from_iter>>(iter: I) -> Result { iter::try_process(iter.into_iter(), |i| i.collect()) } } #[unstable(feature = "try_trait_v2", issue = "84277")] #[rustc_const_unstable(feature = "const_convert", issue = "88674")] impl const ops::Try for Result { type Output = T; type Residual = Result; #[inline] fn from_output(output: Self::Output) -> Self { Ok(output) } #[inline] fn branch(self) -> ControlFlow { match self { Ok(v) => ControlFlow::Continue(v), Err(e) => ControlFlow::Break(Err(e)), } } } #[unstable(feature = "try_trait_v2", issue = "84277")] #[rustc_const_unstable(feature = "const_convert", issue = "88674")] impl> const ops::FromResidual> for Result { #[inline] #[track_caller] fn from_residual(residual: Result) -> Self { match residual { Err(e) => Err(From::from(e)), } } } #[unstable(feature = "try_trait_v2_yeet", issue = "96374")] impl> ops::FromResidual> for Result { #[inline] fn from_residual(ops::Yeet(e): ops::Yeet) -> Self { Err(From::from(e)) } } #[unstable(feature = "try_trait_v2_residual", issue = "91285")] #[rustc_const_unstable(feature = "const_try", issue = "74935")] impl const ops::Residual for Result { type TryType = Result; }