use crate::char; use crate::fmt::{self, Write}; use crate::mem; use super::from_utf8_unchecked; use super::validations::utf8_char_width; /// Lossy UTF-8 string. #[unstable(feature = "str_internals", issue = "none")] pub struct Utf8Lossy { bytes: [u8], } impl Utf8Lossy { #[must_use] pub fn from_bytes(bytes: &[u8]) -> &Utf8Lossy { // SAFETY: Both use the same memory layout, and UTF-8 correctness isn't required. unsafe { mem::transmute(bytes) } } pub fn chunks(&self) -> Utf8LossyChunksIter<'_> { Utf8LossyChunksIter { source: &self.bytes } } } /// Iterator over lossy UTF-8 string #[must_use = "iterators are lazy and do nothing unless consumed"] #[unstable(feature = "str_internals", issue = "none")] #[allow(missing_debug_implementations)] pub struct Utf8LossyChunksIter<'a> { source: &'a [u8], } #[unstable(feature = "str_internals", issue = "none")] #[derive(PartialEq, Eq, Debug)] pub struct Utf8LossyChunk<'a> { /// Sequence of valid chars. /// Can be empty between broken UTF-8 chars. pub valid: &'a str, /// Single broken char, empty if none. /// Empty iff iterator item is last. pub broken: &'a [u8], } impl<'a> Iterator for Utf8LossyChunksIter<'a> { type Item = Utf8LossyChunk<'a>; fn next(&mut self) -> Option> { if self.source.is_empty() { return None; } const TAG_CONT_U8: u8 = 128; fn safe_get(xs: &[u8], i: usize) -> u8 { *xs.get(i).unwrap_or(&0) } let mut i = 0; let mut valid_up_to = 0; while i < self.source.len() { // SAFETY: `i < self.source.len()` per previous line. // For some reason the following are both significantly slower: // while let Some(&byte) = self.source.get(i) { // while let Some(byte) = self.source.get(i).copied() { let byte = unsafe { *self.source.get_unchecked(i) }; i += 1; if byte < 128 { // This could be a `1 => ...` case in the match below, but for // the common case of all-ASCII inputs, we bypass loading the // sizeable UTF8_CHAR_WIDTH table into cache. } else { let w = utf8_char_width(byte); match w { 2 => { if safe_get(self.source, i) & 192 != TAG_CONT_U8 { break; } i += 1; } 3 => { match (byte, safe_get(self.source, i)) { (0xE0, 0xA0..=0xBF) => (), (0xE1..=0xEC, 0x80..=0xBF) => (), (0xED, 0x80..=0x9F) => (), (0xEE..=0xEF, 0x80..=0xBF) => (), _ => break, } i += 1; if safe_get(self.source, i) & 192 != TAG_CONT_U8 { break; } i += 1; } 4 => { match (byte, safe_get(self.source, i)) { (0xF0, 0x90..=0xBF) => (), (0xF1..=0xF3, 0x80..=0xBF) => (), (0xF4, 0x80..=0x8F) => (), _ => break, } i += 1; if safe_get(self.source, i) & 192 != TAG_CONT_U8 { break; } i += 1; if safe_get(self.source, i) & 192 != TAG_CONT_U8 { break; } i += 1; } _ => break, } } valid_up_to = i; } // SAFETY: `i <= self.source.len()` because it is only ever incremented // via `i += 1` and in between every single one of those increments, `i` // is compared against `self.source.len()`. That happens either // literally by `i < self.source.len()` in the while-loop's condition, // or indirectly by `safe_get(self.source, i) & 192 != TAG_CONT_U8`. The // loop is terminated as soon as the latest `i += 1` has made `i` no // longer less than `self.source.len()`, which means it'll be at most // equal to `self.source.len()`. let (inspected, remaining) = unsafe { self.source.split_at_unchecked(i) }; self.source = remaining; // SAFETY: `valid_up_to <= i` because it is only ever assigned via // `valid_up_to = i` and `i` only increases. let (valid, broken) = unsafe { inspected.split_at_unchecked(valid_up_to) }; Some(Utf8LossyChunk { // SAFETY: All bytes up to `valid_up_to` are valid UTF-8. valid: unsafe { from_utf8_unchecked(valid) }, broken, }) } } impl fmt::Display for Utf8Lossy { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // If we're the empty string then our iterator won't actually yield // anything, so perform the formatting manually if self.bytes.is_empty() { return "".fmt(f); } for Utf8LossyChunk { valid, broken } in self.chunks() { // If we successfully decoded the whole chunk as a valid string then // we can return a direct formatting of the string which will also // respect various formatting flags if possible. if valid.len() == self.bytes.len() { assert!(broken.is_empty()); return valid.fmt(f); } f.write_str(valid)?; if !broken.is_empty() { f.write_char(char::REPLACEMENT_CHARACTER)?; } } Ok(()) } } impl fmt::Debug for Utf8Lossy { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_char('"')?; for Utf8LossyChunk { valid, broken } in self.chunks() { // Valid part. // Here we partially parse UTF-8 again which is suboptimal. { let mut from = 0; for (i, c) in valid.char_indices() { let esc = c.escape_debug(); // If char needs escaping, flush backlog so far and write, else skip if esc.len() != 1 { f.write_str(&valid[from..i])?; for c in esc { f.write_char(c)?; } from = i + c.len_utf8(); } } f.write_str(&valid[from..])?; } // Broken parts of string as hex escape. for &b in broken { write!(f, "\\x{:02x}", b)?; } } f.write_char('"') } }