//! String manipulation. //! //! For more details, see the [`std::str`] module. //! //! [`std::str`]: ../../std/str/index.html #![stable(feature = "rust1", since = "1.0.0")] mod converts; mod count; mod error; mod iter; mod traits; mod validations; use self::pattern::Pattern; use self::pattern::{DoubleEndedSearcher, ReverseSearcher, Searcher}; use crate::char::{self, EscapeDebugExtArgs}; use crate::mem; use crate::slice::{self, SliceIndex}; pub mod pattern; mod lossy; #[unstable(feature = "utf8_chunks", issue = "99543")] pub use lossy::{Utf8Chunk, Utf8Chunks}; #[stable(feature = "rust1", since = "1.0.0")] pub use converts::{from_utf8, from_utf8_unchecked}; #[stable(feature = "str_mut_extras", since = "1.20.0")] pub use converts::{from_utf8_mut, from_utf8_unchecked_mut}; #[stable(feature = "rust1", since = "1.0.0")] pub use error::{ParseBoolError, Utf8Error}; #[stable(feature = "rust1", since = "1.0.0")] pub use traits::FromStr; #[stable(feature = "rust1", since = "1.0.0")] pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace}; #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated)] pub use iter::LinesAny; #[stable(feature = "rust1", since = "1.0.0")] pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator}; #[stable(feature = "rust1", since = "1.0.0")] pub use iter::{RSplitN, SplitN}; #[stable(feature = "str_matches", since = "1.2.0")] pub use iter::{Matches, RMatches}; #[stable(feature = "str_match_indices", since = "1.5.0")] pub use iter::{MatchIndices, RMatchIndices}; #[stable(feature = "encode_utf16", since = "1.8.0")] pub use iter::EncodeUtf16; #[stable(feature = "str_escape", since = "1.34.0")] pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode}; #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] pub use iter::SplitAsciiWhitespace; #[stable(feature = "split_inclusive", since = "1.51.0")] pub use iter::SplitInclusive; #[unstable(feature = "str_internals", issue = "none")] pub use validations::{next_code_point, utf8_char_width}; use iter::MatchIndicesInternal; use iter::SplitInternal; use iter::{MatchesInternal, SplitNInternal}; #[inline(never)] #[cold] #[track_caller] #[rustc_allow_const_fn_unstable(const_eval_select)] const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! { // SAFETY: panics for both branches unsafe { crate::intrinsics::const_eval_select( (s, begin, end), slice_error_fail_ct, slice_error_fail_rt, ) } } #[track_caller] const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! { panic!("failed to slice string"); } #[track_caller] fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! { const MAX_DISPLAY_LENGTH: usize = 256; let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH); let s_trunc = &s[..trunc_len]; let ellipsis = if trunc_len < s.len() { "[...]" } else { "" }; // 1. out of bounds if begin > s.len() || end > s.len() { let oob_index = if begin > s.len() { begin } else { end }; panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}"); } // 2. begin <= end assert!( begin <= end, "begin <= end ({} <= {}) when slicing `{}`{}", begin, end, s_trunc, ellipsis ); // 3. character boundary let index = if !s.is_char_boundary(begin) { begin } else { end }; // find the character let char_start = s.floor_char_boundary(index); // `char_start` must be less than len and a char boundary let ch = s[char_start..].chars().next().unwrap(); let char_range = char_start..char_start + ch.len_utf8(); panic!( "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}", index, ch, char_range, s_trunc, ellipsis ); } #[cfg(not(test))] impl str { /// Returns the length of `self`. /// /// This length is in bytes, not [`char`]s or graphemes. In other words, /// it might not be what a human considers the length of the string. /// /// [`char`]: prim@char /// /// # Examples /// /// Basic usage: /// /// ``` /// let len = "foo".len(); /// assert_eq!(3, len); /// /// assert_eq!("ƒoo".len(), 4); // fancy f! /// assert_eq!("ƒoo".chars().count(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")] #[must_use] #[inline] pub const fn len(&self) -> usize { self.as_bytes().len() } /// Returns `true` if `self` has a length of zero bytes. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = ""; /// assert!(s.is_empty()); /// /// let s = "not empty"; /// assert!(!s.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")] #[must_use] #[inline] pub const fn is_empty(&self) -> bool { self.len() == 0 } /// Checks that `index`-th byte is the first byte in a UTF-8 code point /// sequence or the end of the string. /// /// The start and end of the string (when `index == self.len()`) are /// considered to be boundaries. /// /// Returns `false` if `index` is greater than `self.len()`. /// /// # Examples /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// assert!(s.is_char_boundary(0)); /// // start of `老` /// assert!(s.is_char_boundary(6)); /// assert!(s.is_char_boundary(s.len())); /// /// // second byte of `ö` /// assert!(!s.is_char_boundary(2)); /// /// // third byte of `老` /// assert!(!s.is_char_boundary(8)); /// ``` #[must_use] #[stable(feature = "is_char_boundary", since = "1.9.0")] #[rustc_const_unstable(feature = "const_is_char_boundary", issue = "none")] #[inline] pub const fn is_char_boundary(&self, index: usize) -> bool { // 0 is always ok. // Test for 0 explicitly so that it can optimize out the check // easily and skip reading string data for that case. // Note that optimizing `self.get(..index)` relies on this. if index == 0 { return true; } match self.as_bytes().get(index) { // For `None` we have two options: // // - index == self.len() // Empty strings are valid, so return true // - index > self.len() // In this case return false // // The check is placed exactly here, because it improves generated // code on higher opt-levels. See PR #84751 for more details. None => index == self.len(), Some(&b) => b.is_utf8_char_boundary(), } } /// Finds the closest `x` not exceeding `index` where `is_char_boundary(x)` is `true`. /// /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't /// exceed a given number of bytes. Note that this is done purely at the character level /// and can still visually split graphemes, even though the underlying characters aren't /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only /// includes 🧑 (person) instead. /// /// # Examples /// /// ``` /// #![feature(round_char_boundary)] /// let s = "❤️🧡💛💚💙💜"; /// assert_eq!(s.len(), 26); /// assert!(!s.is_char_boundary(13)); /// /// let closest = s.floor_char_boundary(13); /// assert_eq!(closest, 10); /// assert_eq!(&s[..closest], "❤️🧡"); /// ``` #[unstable(feature = "round_char_boundary", issue = "93743")] #[inline] pub fn floor_char_boundary(&self, index: usize) -> usize { if index >= self.len() { self.len() } else { let lower_bound = index.saturating_sub(3); let new_index = self.as_bytes()[lower_bound..=index] .iter() .rposition(|b| b.is_utf8_char_boundary()); // SAFETY: we know that the character boundary will be within four bytes unsafe { lower_bound + new_index.unwrap_unchecked() } } } /// Finds the closest `x` not below `index` where `is_char_boundary(x)` is `true`. /// /// This method is the natural complement to [`floor_char_boundary`]. See that method /// for more details. /// /// [`floor_char_boundary`]: str::floor_char_boundary /// /// # Panics /// /// Panics if `index > self.len()`. /// /// # Examples /// /// ``` /// #![feature(round_char_boundary)] /// let s = "❤️🧡💛💚💙💜"; /// assert_eq!(s.len(), 26); /// assert!(!s.is_char_boundary(13)); /// /// let closest = s.ceil_char_boundary(13); /// assert_eq!(closest, 14); /// assert_eq!(&s[..closest], "❤️🧡💛"); /// ``` #[unstable(feature = "round_char_boundary", issue = "93743")] #[inline] pub fn ceil_char_boundary(&self, index: usize) -> usize { if index > self.len() { slice_error_fail(self, index, index) } else { let upper_bound = Ord::min(index + 4, self.len()); self.as_bytes()[index..upper_bound] .iter() .position(|b| b.is_utf8_char_boundary()) .map_or(upper_bound, |pos| pos + index) } } /// Converts a string slice to a byte slice. To convert the byte slice back /// into a string slice, use the [`from_utf8`] function. /// /// # Examples /// /// Basic usage: /// /// ``` /// let bytes = "bors".as_bytes(); /// assert_eq!(b"bors", bytes); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")] #[must_use] #[inline(always)] #[allow(unused_attributes)] pub const fn as_bytes(&self) -> &[u8] { // SAFETY: const sound because we transmute two types with the same layout unsafe { mem::transmute(self) } } /// Converts a mutable string slice to a mutable byte slice. /// /// # Safety /// /// The caller must ensure that the content of the slice is valid UTF-8 /// before the borrow ends and the underlying `str` is used. /// /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior. /// /// # Examples /// /// Basic usage: /// /// ``` /// let mut s = String::from("Hello"); /// let bytes = unsafe { s.as_bytes_mut() }; /// /// assert_eq!(b"Hello", bytes); /// ``` /// /// Mutability: /// /// ``` /// let mut s = String::from("🗻∈🌏"); /// /// unsafe { /// let bytes = s.as_bytes_mut(); /// /// bytes[0] = 0xF0; /// bytes[1] = 0x9F; /// bytes[2] = 0x8D; /// bytes[3] = 0x94; /// } /// /// assert_eq!("🍔∈🌏", s); /// ``` #[stable(feature = "str_mut_extras", since = "1.20.0")] #[must_use] #[inline(always)] pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] { // SAFETY: the cast from `&str` to `&[u8]` is safe since `str` // has the same layout as `&[u8]` (only libstd can make this guarantee). // The pointer dereference is safe since it comes from a mutable reference which // is guaranteed to be valid for writes. unsafe { &mut *(self as *mut str as *mut [u8]) } } /// Converts a string slice to a raw pointer. /// /// As string slices are a slice of bytes, the raw pointer points to a /// [`u8`]. This pointer will be pointing to the first byte of the string /// slice. /// /// The caller must ensure that the returned pointer is never written to. /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`]. /// /// [`as_mut_ptr`]: str::as_mut_ptr /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = "Hello"; /// let ptr = s.as_ptr(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")] #[must_use] #[inline] pub const fn as_ptr(&self) -> *const u8 { self as *const str as *const u8 } /// Converts a mutable string slice to a raw pointer. /// /// As string slices are a slice of bytes, the raw pointer points to a /// [`u8`]. This pointer will be pointing to the first byte of the string /// slice. /// /// It is your responsibility to make sure that the string slice only gets /// modified in a way that it remains valid UTF-8. #[stable(feature = "str_as_mut_ptr", since = "1.36.0")] #[must_use] #[inline] pub fn as_mut_ptr(&mut self) -> *mut u8 { self as *mut str as *mut u8 } /// Returns a subslice of `str`. /// /// This is the non-panicking alternative to indexing the `str`. Returns /// [`None`] whenever equivalent indexing operation would panic. /// /// # Examples /// /// ``` /// let v = String::from("🗻∈🌏"); /// /// assert_eq!(Some("🗻"), v.get(0..4)); /// /// // indices not on UTF-8 sequence boundaries /// assert!(v.get(1..).is_none()); /// assert!(v.get(..8).is_none()); /// /// // out of bounds /// assert!(v.get(..42).is_none()); /// ``` #[stable(feature = "str_checked_slicing", since = "1.20.0")] #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] #[inline] pub const fn get>(&self, i: I) -> Option<&I::Output> { i.get(self) } /// Returns a mutable subslice of `str`. /// /// This is the non-panicking alternative to indexing the `str`. Returns /// [`None`] whenever equivalent indexing operation would panic. /// /// # Examples /// /// ``` /// let mut v = String::from("hello"); /// // correct length /// assert!(v.get_mut(0..5).is_some()); /// // out of bounds /// assert!(v.get_mut(..42).is_none()); /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); /// /// assert_eq!("hello", v); /// { /// let s = v.get_mut(0..2); /// let s = s.map(|s| { /// s.make_ascii_uppercase(); /// &*s /// }); /// assert_eq!(Some("HE"), s); /// } /// assert_eq!("HEllo", v); /// ``` #[stable(feature = "str_checked_slicing", since = "1.20.0")] #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] #[inline] pub const fn get_mut>(&mut self, i: I) -> Option<&mut I::Output> { i.get_mut(self) } /// Returns an unchecked subslice of `str`. /// /// This is the unchecked alternative to indexing the `str`. /// /// # Safety /// /// Callers of this function are responsible that these preconditions are /// satisfied: /// /// * The starting index must not exceed the ending index; /// * Indexes must be within bounds of the original slice; /// * Indexes must lie on UTF-8 sequence boundaries. /// /// Failing that, the returned string slice may reference invalid memory or /// violate the invariants communicated by the `str` type. /// /// # Examples /// /// ``` /// let v = "🗻∈🌏"; /// unsafe { /// assert_eq!("🗻", v.get_unchecked(0..4)); /// assert_eq!("∈", v.get_unchecked(4..7)); /// assert_eq!("🌏", v.get_unchecked(7..11)); /// } /// ``` #[stable(feature = "str_checked_slicing", since = "1.20.0")] #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] #[inline] pub const unsafe fn get_unchecked>(&self, i: I) -> &I::Output { // SAFETY: the caller must uphold the safety contract for `get_unchecked`; // the slice is dereferenceable because `self` is a safe reference. // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. unsafe { &*i.get_unchecked(self) } } /// Returns a mutable, unchecked subslice of `str`. /// /// This is the unchecked alternative to indexing the `str`. /// /// # Safety /// /// Callers of this function are responsible that these preconditions are /// satisfied: /// /// * The starting index must not exceed the ending index; /// * Indexes must be within bounds of the original slice; /// * Indexes must lie on UTF-8 sequence boundaries. /// /// Failing that, the returned string slice may reference invalid memory or /// violate the invariants communicated by the `str` type. /// /// # Examples /// /// ``` /// let mut v = String::from("🗻∈🌏"); /// unsafe { /// assert_eq!("🗻", v.get_unchecked_mut(0..4)); /// assert_eq!("∈", v.get_unchecked_mut(4..7)); /// assert_eq!("🌏", v.get_unchecked_mut(7..11)); /// } /// ``` #[stable(feature = "str_checked_slicing", since = "1.20.0")] #[rustc_const_unstable(feature = "const_slice_index", issue = "none")] #[inline] pub const unsafe fn get_unchecked_mut>( &mut self, i: I, ) -> &mut I::Output { // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; // the slice is dereferenceable because `self` is a safe reference. // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. unsafe { &mut *i.get_unchecked_mut(self) } } /// Creates a string slice from another string slice, bypassing safety /// checks. /// /// This is generally not recommended, use with caution! For a safe /// alternative see [`str`] and [`Index`]. /// /// [`Index`]: crate::ops::Index /// /// This new slice goes from `begin` to `end`, including `begin` but /// excluding `end`. /// /// To get a mutable string slice instead, see the /// [`slice_mut_unchecked`] method. /// /// [`slice_mut_unchecked`]: str::slice_mut_unchecked /// /// # Safety /// /// Callers of this function are responsible that three preconditions are /// satisfied: /// /// * `begin` must not exceed `end`. /// * `begin` and `end` must be byte positions within the string slice. /// * `begin` and `end` must lie on UTF-8 sequence boundaries. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// /// unsafe { /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); /// } /// /// let s = "Hello, world!"; /// /// unsafe { /// assert_eq!("world", s.slice_unchecked(7, 12)); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")] #[must_use] #[inline] pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str { // SAFETY: the caller must uphold the safety contract for `get_unchecked`; // the slice is dereferenceable because `self` is a safe reference. // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. unsafe { &*(begin..end).get_unchecked(self) } } /// Creates a string slice from another string slice, bypassing safety /// checks. /// This is generally not recommended, use with caution! For a safe /// alternative see [`str`] and [`IndexMut`]. /// /// [`IndexMut`]: crate::ops::IndexMut /// /// This new slice goes from `begin` to `end`, including `begin` but /// excluding `end`. /// /// To get an immutable string slice instead, see the /// [`slice_unchecked`] method. /// /// [`slice_unchecked`]: str::slice_unchecked /// /// # Safety /// /// Callers of this function are responsible that three preconditions are /// satisfied: /// /// * `begin` must not exceed `end`. /// * `begin` and `end` must be byte positions within the string slice. /// * `begin` and `end` must lie on UTF-8 sequence boundaries. #[stable(feature = "str_slice_mut", since = "1.5.0")] #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")] #[inline] pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str { // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`; // the slice is dereferenceable because `self` is a safe reference. // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is. unsafe { &mut *(begin..end).get_unchecked_mut(self) } } /// Divide one string slice into two at an index. /// /// The argument, `mid`, should be a byte offset from the start of the /// string. It must also be on the boundary of a UTF-8 code point. /// /// The two slices returned go from the start of the string slice to `mid`, /// and from `mid` to the end of the string slice. /// /// To get mutable string slices instead, see the [`split_at_mut`] /// method. /// /// [`split_at_mut`]: str::split_at_mut /// /// # Panics /// /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is /// past the end of the last code point of the string slice. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = "Per Martin-Löf"; /// /// let (first, last) = s.split_at(3); /// /// assert_eq!("Per", first); /// assert_eq!(" Martin-Löf", last); /// ``` #[inline] #[must_use] #[stable(feature = "str_split_at", since = "1.4.0")] pub fn split_at(&self, mid: usize) -> (&str, &str) { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(mid) { // SAFETY: just checked that `mid` is on a char boundary. unsafe { (self.get_unchecked(0..mid), self.get_unchecked(mid..self.len())) } } else { slice_error_fail(self, 0, mid) } } /// Divide one mutable string slice into two at an index. /// /// The argument, `mid`, should be a byte offset from the start of the /// string. It must also be on the boundary of a UTF-8 code point. /// /// The two slices returned go from the start of the string slice to `mid`, /// and from `mid` to the end of the string slice. /// /// To get immutable string slices instead, see the [`split_at`] method. /// /// [`split_at`]: str::split_at /// /// # Panics /// /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is /// past the end of the last code point of the string slice. /// /// # Examples /// /// Basic usage: /// /// ``` /// let mut s = "Per Martin-Löf".to_string(); /// { /// let (first, last) = s.split_at_mut(3); /// first.make_ascii_uppercase(); /// assert_eq!("PER", first); /// assert_eq!(" Martin-Löf", last); /// } /// assert_eq!("PER Martin-Löf", s); /// ``` #[inline] #[must_use] #[stable(feature = "str_split_at", since = "1.4.0")] pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) { // is_char_boundary checks that the index is in [0, .len()] if self.is_char_boundary(mid) { let len = self.len(); let ptr = self.as_mut_ptr(); // SAFETY: just checked that `mid` is on a char boundary. unsafe { ( from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)), from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)), ) } } else { slice_error_fail(self, 0, mid) } } /// Returns an iterator over the [`char`]s of a string slice. /// /// As a string slice consists of valid UTF-8, we can iterate through a /// string slice by [`char`]. This method returns such an iterator. /// /// It's important to remember that [`char`] represents a Unicode Scalar /// Value, and might not match your idea of what a 'character' is. Iteration /// over grapheme clusters may be what you actually want. This functionality /// is not provided by Rust's standard library, check crates.io instead. /// /// # Examples /// /// Basic usage: /// /// ``` /// let word = "goodbye"; /// /// let count = word.chars().count(); /// assert_eq!(7, count); /// /// let mut chars = word.chars(); /// /// assert_eq!(Some('g'), chars.next()); /// assert_eq!(Some('o'), chars.next()); /// assert_eq!(Some('o'), chars.next()); /// assert_eq!(Some('d'), chars.next()); /// assert_eq!(Some('b'), chars.next()); /// assert_eq!(Some('y'), chars.next()); /// assert_eq!(Some('e'), chars.next()); /// /// assert_eq!(None, chars.next()); /// ``` /// /// Remember, [`char`]s might not match your intuition about characters: /// /// [`char`]: prim@char /// /// ``` /// let y = "y̆"; /// /// let mut chars = y.chars(); /// /// assert_eq!(Some('y'), chars.next()); // not 'y̆' /// assert_eq!(Some('\u{0306}'), chars.next()); /// /// assert_eq!(None, chars.next()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chars(&self) -> Chars<'_> { Chars { iter: self.as_bytes().iter() } } /// Returns an iterator over the [`char`]s of a string slice, and their /// positions. /// /// As a string slice consists of valid UTF-8, we can iterate through a /// string slice by [`char`]. This method returns an iterator of both /// these [`char`]s, as well as their byte positions. /// /// The iterator yields tuples. The position is first, the [`char`] is /// second. /// /// # Examples /// /// Basic usage: /// /// ``` /// let word = "goodbye"; /// /// let count = word.char_indices().count(); /// assert_eq!(7, count); /// /// let mut char_indices = word.char_indices(); /// /// assert_eq!(Some((0, 'g')), char_indices.next()); /// assert_eq!(Some((1, 'o')), char_indices.next()); /// assert_eq!(Some((2, 'o')), char_indices.next()); /// assert_eq!(Some((3, 'd')), char_indices.next()); /// assert_eq!(Some((4, 'b')), char_indices.next()); /// assert_eq!(Some((5, 'y')), char_indices.next()); /// assert_eq!(Some((6, 'e')), char_indices.next()); /// /// assert_eq!(None, char_indices.next()); /// ``` /// /// Remember, [`char`]s might not match your intuition about characters: /// /// [`char`]: prim@char /// /// ``` /// let yes = "y̆es"; /// /// let mut char_indices = yes.char_indices(); /// /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') /// assert_eq!(Some((1, '\u{0306}')), char_indices.next()); /// /// // note the 3 here - the last character took up two bytes /// assert_eq!(Some((3, 'e')), char_indices.next()); /// assert_eq!(Some((4, 's')), char_indices.next()); /// /// assert_eq!(None, char_indices.next()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn char_indices(&self) -> CharIndices<'_> { CharIndices { front_offset: 0, iter: self.chars() } } /// An iterator over the bytes of a string slice. /// /// As a string slice consists of a sequence of bytes, we can iterate /// through a string slice by byte. This method returns such an iterator. /// /// # Examples /// /// Basic usage: /// /// ``` /// let mut bytes = "bors".bytes(); /// /// assert_eq!(Some(b'b'), bytes.next()); /// assert_eq!(Some(b'o'), bytes.next()); /// assert_eq!(Some(b'r'), bytes.next()); /// assert_eq!(Some(b's'), bytes.next()); /// /// assert_eq!(None, bytes.next()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn bytes(&self) -> Bytes<'_> { Bytes(self.as_bytes().iter().copied()) } /// Splits a string slice by whitespace. /// /// The iterator returned will return string slices that are sub-slices of /// the original string slice, separated by any amount of whitespace. /// /// 'Whitespace' is defined according to the terms of the Unicode Derived /// Core Property `White_Space`. If you only want to split on ASCII whitespace /// instead, use [`split_ascii_whitespace`]. /// /// [`split_ascii_whitespace`]: str::split_ascii_whitespace /// /// # Examples /// /// Basic usage: /// /// ``` /// let mut iter = "A few words".split_whitespace(); /// /// assert_eq!(Some("A"), iter.next()); /// assert_eq!(Some("few"), iter.next()); /// assert_eq!(Some("words"), iter.next()); /// /// assert_eq!(None, iter.next()); /// ``` /// /// All kinds of whitespace are considered: /// /// ``` /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); /// assert_eq!(Some("Mary"), iter.next()); /// assert_eq!(Some("had"), iter.next()); /// assert_eq!(Some("a"), iter.next()); /// assert_eq!(Some("little"), iter.next()); /// assert_eq!(Some("lamb"), iter.next()); /// /// assert_eq!(None, iter.next()); /// ``` #[must_use = "this returns the split string as an iterator, \ without modifying the original"] #[stable(feature = "split_whitespace", since = "1.1.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "str_split_whitespace")] #[inline] pub fn split_whitespace(&self) -> SplitWhitespace<'_> { SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) } } /// Splits a string slice by ASCII whitespace. /// /// The iterator returned will return string slices that are sub-slices of /// the original string slice, separated by any amount of ASCII whitespace. /// /// To split by Unicode `Whitespace` instead, use [`split_whitespace`]. /// /// [`split_whitespace`]: str::split_whitespace /// /// # Examples /// /// Basic usage: /// /// ``` /// let mut iter = "A few words".split_ascii_whitespace(); /// /// assert_eq!(Some("A"), iter.next()); /// assert_eq!(Some("few"), iter.next()); /// assert_eq!(Some("words"), iter.next()); /// /// assert_eq!(None, iter.next()); /// ``` /// /// All kinds of ASCII whitespace are considered: /// /// ``` /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace(); /// assert_eq!(Some("Mary"), iter.next()); /// assert_eq!(Some("had"), iter.next()); /// assert_eq!(Some("a"), iter.next()); /// assert_eq!(Some("little"), iter.next()); /// assert_eq!(Some("lamb"), iter.next()); /// /// assert_eq!(None, iter.next()); /// ``` #[must_use = "this returns the split string as an iterator, \ without modifying the original"] #[stable(feature = "split_ascii_whitespace", since = "1.34.0")] #[inline] pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> { let inner = self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr); SplitAsciiWhitespace { inner } } /// An iterator over the lines of a string, as string slices. /// /// Lines are ended with either a newline (`\n`) or a carriage return with /// a line feed (`\r\n`). /// /// The final line ending is optional. A string that ends with a final line /// ending will return the same lines as an otherwise identical string /// without a final line ending. /// /// # Examples /// /// Basic usage: /// /// ``` /// let text = "foo\r\nbar\n\nbaz\n"; /// let mut lines = text.lines(); /// /// assert_eq!(Some("foo"), lines.next()); /// assert_eq!(Some("bar"), lines.next()); /// assert_eq!(Some(""), lines.next()); /// assert_eq!(Some("baz"), lines.next()); /// /// assert_eq!(None, lines.next()); /// ``` /// /// The final line ending isn't required: /// /// ``` /// let text = "foo\nbar\n\r\nbaz"; /// let mut lines = text.lines(); /// /// assert_eq!(Some("foo"), lines.next()); /// assert_eq!(Some("bar"), lines.next()); /// assert_eq!(Some(""), lines.next()); /// assert_eq!(Some("baz"), lines.next()); /// /// assert_eq!(None, lines.next()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn lines(&self) -> Lines<'_> { Lines(self.split_terminator('\n').map(LinesAnyMap)) } /// An iterator over the lines of a string. #[stable(feature = "rust1", since = "1.0.0")] #[deprecated(since = "1.4.0", note = "use lines() instead now")] #[inline] #[allow(deprecated)] pub fn lines_any(&self) -> LinesAny<'_> { LinesAny(self.lines()) } /// Returns an iterator of `u16` over the string encoded as UTF-16. /// /// # Examples /// /// Basic usage: /// /// ``` /// let text = "Zażółć gęślą jaźń"; /// /// let utf8_len = text.len(); /// let utf16_len = text.encode_utf16().count(); /// /// assert!(utf16_len <= utf8_len); /// ``` #[must_use = "this returns the encoded string as an iterator, \ without modifying the original"] #[stable(feature = "encode_utf16", since = "1.8.0")] pub fn encode_utf16(&self) -> EncodeUtf16<'_> { EncodeUtf16 { chars: self.chars(), extra: 0 } } /// Returns `true` if the given pattern matches a sub-slice of /// this string slice. /// /// Returns `false` if it does not. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// Basic usage: /// /// ``` /// let bananas = "bananas"; /// /// assert!(bananas.contains("nana")); /// assert!(!bananas.contains("apples")); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn contains<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { pat.is_contained_in(self) } /// Returns `true` if the given pattern matches a prefix of this /// string slice. /// /// Returns `false` if it does not. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// Basic usage: /// /// ``` /// let bananas = "bananas"; /// /// assert!(bananas.starts_with("bana")); /// assert!(!bananas.starts_with("nana")); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn starts_with<'a, P: Pattern<'a>>(&'a self, pat: P) -> bool { pat.is_prefix_of(self) } /// Returns `true` if the given pattern matches a suffix of this /// string slice. /// /// Returns `false` if it does not. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// Basic usage: /// /// ``` /// let bananas = "bananas"; /// /// assert!(bananas.ends_with("anas")); /// assert!(!bananas.ends_with("nana")); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { pat.is_suffix_of(self) } /// Returns the byte index of the first character of this string slice that /// matches the pattern. /// /// Returns [`None`] if the pattern doesn't match. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// Simple patterns: /// /// ``` /// let s = "Löwe 老虎 Léopard Gepardi"; /// /// assert_eq!(s.find('L'), Some(0)); /// assert_eq!(s.find('é'), Some(14)); /// assert_eq!(s.find("pard"), Some(17)); /// ``` /// /// More complex patterns using point-free style and closures: /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// /// assert_eq!(s.find(char::is_whitespace), Some(5)); /// assert_eq!(s.find(char::is_lowercase), Some(1)); /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4)); /// ``` /// /// Not finding the pattern: /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// let x: &[_] = &['1', '2']; /// /// assert_eq!(s.find(x), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn find<'a, P: Pattern<'a>>(&'a self, pat: P) -> Option { pat.into_searcher(self).next_match().map(|(i, _)| i) } /// Returns the byte index for the first character of the last match of the pattern in /// this string slice. /// /// Returns [`None`] if the pattern doesn't match. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// Simple patterns: /// /// ``` /// let s = "Löwe 老虎 Léopard Gepardi"; /// /// assert_eq!(s.rfind('L'), Some(13)); /// assert_eq!(s.rfind('é'), Some(14)); /// assert_eq!(s.rfind("pard"), Some(24)); /// ``` /// /// More complex patterns with closures: /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// /// assert_eq!(s.rfind(char::is_whitespace), Some(12)); /// assert_eq!(s.rfind(char::is_lowercase), Some(20)); /// ``` /// /// Not finding the pattern: /// /// ``` /// let s = "Löwe 老虎 Léopard"; /// let x: &[_] = &['1', '2']; /// /// assert_eq!(s.rfind(x), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rfind<'a, P>(&'a self, pat: P) -> Option where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { pat.into_searcher(self).next_match_back().map(|(i, _)| i) } /// An iterator over substrings of this string slice, separated by /// characters matched by a pattern. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern /// allows a reverse search and forward/reverse search yields the same /// elements. This is true for, e.g., [`char`], but not for `&str`. /// /// If the pattern allows a reverse search but its results might differ /// from a forward search, the [`rsplit`] method can be used. /// /// [`rsplit`]: str::rsplit /// /// # Examples /// /// Simple patterns: /// /// ``` /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); /// /// let v: Vec<&str> = "".split('X').collect(); /// assert_eq!(v, [""]); /// /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); /// assert_eq!(v, ["lion", "", "tiger", "leopard"]); /// /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); /// assert_eq!(v, ["lion", "tiger", "leopard"]); /// /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); /// assert_eq!(v, ["abc", "def", "ghi"]); /// /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); /// assert_eq!(v, ["lion", "tiger", "leopard"]); /// ``` /// /// If the pattern is a slice of chars, split on each occurrence of any of the characters: /// /// ``` /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect(); /// assert_eq!(v, ["2020", "11", "03", "23", "59"]); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); /// assert_eq!(v, ["abc", "def", "ghi"]); /// ``` /// /// If a string contains multiple contiguous separators, you will end up /// with empty strings in the output: /// /// ``` /// let x = "||||a||b|c".to_string(); /// let d: Vec<_> = x.split('|').collect(); /// /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); /// ``` /// /// Contiguous separators are separated by the empty string. /// /// ``` /// let x = "(///)".to_string(); /// let d: Vec<_> = x.split('/').collect(); /// /// assert_eq!(d, &["(", "", "", ")"]); /// ``` /// /// Separators at the start or end of a string are neighbored /// by empty strings. /// /// ``` /// let d: Vec<_> = "010".split("0").collect(); /// assert_eq!(d, &["", "1", ""]); /// ``` /// /// When the empty string is used as a separator, it separates /// every character in the string, along with the beginning /// and end of the string. /// /// ``` /// let f: Vec<_> = "rust".split("").collect(); /// assert_eq!(f, &["", "r", "u", "s", "t", ""]); /// ``` /// /// Contiguous separators can lead to possibly surprising behavior /// when whitespace is used as the separator. This code is correct: /// /// ``` /// let x = " a b c".to_string(); /// let d: Vec<_> = x.split(' ').collect(); /// /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]); /// ``` /// /// It does _not_ give you: /// /// ```,ignore /// assert_eq!(d, &["a", "b", "c"]); /// ``` /// /// Use [`split_whitespace`] for this behavior. /// /// [`split_whitespace`]: str::split_whitespace #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split<'a, P: Pattern<'a>>(&'a self, pat: P) -> Split<'a, P> { Split(SplitInternal { start: 0, end: self.len(), matcher: pat.into_searcher(self), allow_trailing_empty: true, finished: false, }) } /// An iterator over substrings of this string slice, separated by /// characters matched by a pattern. Differs from the iterator produced by /// `split` in that `split_inclusive` leaves the matched part as the /// terminator of the substring. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// ``` /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb." /// .split_inclusive('\n').collect(); /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]); /// ``` /// /// If the last element of the string is matched, /// that element will be considered the terminator of the preceding substring. /// That substring will be the last item returned by the iterator. /// /// ``` /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n" /// .split_inclusive('\n').collect(); /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]); /// ``` #[stable(feature = "split_inclusive", since = "1.51.0")] #[inline] pub fn split_inclusive<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitInclusive<'a, P> { SplitInclusive(SplitInternal { start: 0, end: self.len(), matcher: pat.into_searcher(self), allow_trailing_empty: false, finished: false, }) } /// An iterator over substrings of the given string slice, separated by /// characters matched by a pattern and yielded in reverse order. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator requires that the pattern supports a reverse /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse /// search yields the same elements. /// /// For iterating from the front, the [`split`] method can be used. /// /// [`split`]: str::split /// /// # Examples /// /// Simple patterns: /// /// ``` /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); /// /// let v: Vec<&str> = "".rsplit('X').collect(); /// assert_eq!(v, [""]); /// /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); /// assert_eq!(v, ["leopard", "tiger", "", "lion"]); /// /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); /// assert_eq!(v, ["leopard", "tiger", "lion"]); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); /// assert_eq!(v, ["ghi", "def", "abc"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { RSplit(self.split(pat).0) } /// An iterator over substrings of the given string slice, separated by /// characters matched by a pattern. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// Equivalent to [`split`], except that the trailing substring /// is skipped if empty. /// /// [`split`]: str::split /// /// This method can be used for string data that is _terminated_, /// rather than _separated_ by a pattern. /// /// # Iterator behavior /// /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern /// allows a reverse search and forward/reverse search yields the same /// elements. This is true for, e.g., [`char`], but not for `&str`. /// /// If the pattern allows a reverse search but its results might differ /// from a forward search, the [`rsplit_terminator`] method can be used. /// /// [`rsplit_terminator`]: str::rsplit_terminator /// /// # Examples /// /// Basic usage: /// /// ``` /// let v: Vec<&str> = "A.B.".split_terminator('.').collect(); /// assert_eq!(v, ["A", "B"]); /// /// let v: Vec<&str> = "A..B..".split_terminator(".").collect(); /// assert_eq!(v, ["A", "", "B", ""]); /// /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect(); /// assert_eq!(v, ["A", "B", "C", "D"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_terminator<'a, P: Pattern<'a>>(&'a self, pat: P) -> SplitTerminator<'a, P> { SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 }) } /// An iterator over substrings of `self`, separated by characters /// matched by a pattern and yielded in reverse order. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// Equivalent to [`split`], except that the trailing substring is /// skipped if empty. /// /// [`split`]: str::split /// /// This method can be used for string data that is _terminated_, /// rather than _separated_ by a pattern. /// /// # Iterator behavior /// /// The returned iterator requires that the pattern supports a /// reverse search, and it will be double ended if a forward/reverse /// search yields the same elements. /// /// For iterating from the front, the [`split_terminator`] method can be /// used. /// /// [`split_terminator`]: str::split_terminator /// /// # Examples /// /// ``` /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); /// assert_eq!(v, ["B", "A"]); /// /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); /// assert_eq!(v, ["", "B", "", "A"]); /// /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect(); /// assert_eq!(v, ["D", "C", "B", "A"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { RSplitTerminator(self.split_terminator(pat).0) } /// An iterator over substrings of the given string slice, separated by a /// pattern, restricted to returning at most `n` items. /// /// If `n` substrings are returned, the last substring (the `n`th substring) /// will contain the remainder of the string. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator will not be double ended, because it is /// not efficient to support. /// /// If the pattern allows a reverse search, the [`rsplitn`] method can be /// used. /// /// [`rsplitn`]: str::rsplitn /// /// # Examples /// /// Simple patterns: /// /// ``` /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); /// assert_eq!(v, ["Mary", "had", "a little lambda"]); /// /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); /// assert_eq!(v, ["lion", "", "tigerXleopard"]); /// /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); /// assert_eq!(v, ["abcXdef"]); /// /// let v: Vec<&str> = "".splitn(1, 'X').collect(); /// assert_eq!(v, [""]); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); /// assert_eq!(v, ["abc", "defXghi"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn<'a, P: Pattern<'a>>(&'a self, n: usize, pat: P) -> SplitN<'a, P> { SplitN(SplitNInternal { iter: self.split(pat).0, count: n }) } /// An iterator over substrings of this string slice, separated by a /// pattern, starting from the end of the string, restricted to returning /// at most `n` items. /// /// If `n` substrings are returned, the last substring (the `n`th substring) /// will contain the remainder of the string. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator will not be double ended, because it is not /// efficient to support. /// /// For splitting from the front, the [`splitn`] method can be used. /// /// [`splitn`]: str::splitn /// /// # Examples /// /// Simple patterns: /// /// ``` /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); /// assert_eq!(v, ["lamb", "little", "Mary had a"]); /// /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); /// assert_eq!(v, ["leopard", "tiger", "lionX"]); /// /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); /// assert_eq!(v, ["leopard", "lion::tiger"]); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); /// assert_eq!(v, ["ghi", "abc1def"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { RSplitN(self.splitn(n, pat).0) } /// Splits the string on the first occurrence of the specified delimiter and /// returns prefix before delimiter and suffix after delimiter. /// /// # Examples /// /// ``` /// assert_eq!("cfg".split_once('='), None); /// assert_eq!("cfg=".split_once('='), Some(("cfg", ""))); /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo"))); /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar"))); /// ``` #[stable(feature = "str_split_once", since = "1.52.0")] #[inline] pub fn split_once<'a, P: Pattern<'a>>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> { let (start, end) = delimiter.into_searcher(self).next_match()?; // SAFETY: `Searcher` is known to return valid indices. unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } } /// Splits the string on the last occurrence of the specified delimiter and /// returns prefix before delimiter and suffix after delimiter. /// /// # Examples /// /// ``` /// assert_eq!("cfg".rsplit_once('='), None); /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo"))); /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar"))); /// ``` #[stable(feature = "str_split_once", since = "1.52.0")] #[inline] pub fn rsplit_once<'a, P>(&'a self, delimiter: P) -> Option<(&'a str, &'a str)> where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { let (start, end) = delimiter.into_searcher(self).next_match_back()?; // SAFETY: `Searcher` is known to return valid indices. unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) } } /// An iterator over the disjoint matches of a pattern within the given string /// slice. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern /// allows a reverse search and forward/reverse search yields the same /// elements. This is true for, e.g., [`char`], but not for `&str`. /// /// If the pattern allows a reverse search but its results might differ /// from a forward search, the [`rmatches`] method can be used. /// /// [`rmatches`]: str::matches /// /// # Examples /// /// Basic usage: /// /// ``` /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); /// assert_eq!(v, ["abc", "abc", "abc"]); /// /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); /// assert_eq!(v, ["1", "2", "3"]); /// ``` #[stable(feature = "str_matches", since = "1.2.0")] #[inline] pub fn matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> Matches<'a, P> { Matches(MatchesInternal(pat.into_searcher(self))) } /// An iterator over the disjoint matches of a pattern within this string slice, /// yielded in reverse order. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator requires that the pattern supports a reverse /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse /// search yields the same elements. /// /// For iterating from the front, the [`matches`] method can be used. /// /// [`matches`]: str::matches /// /// # Examples /// /// Basic usage: /// /// ``` /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); /// assert_eq!(v, ["abc", "abc", "abc"]); /// /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); /// assert_eq!(v, ["3", "2", "1"]); /// ``` #[stable(feature = "str_matches", since = "1.2.0")] #[inline] pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { RMatches(self.matches(pat).0) } /// An iterator over the disjoint matches of a pattern within this string /// slice as well as the index that the match starts at. /// /// For matches of `pat` within `self` that overlap, only the indices /// corresponding to the first match are returned. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern /// allows a reverse search and forward/reverse search yields the same /// elements. This is true for, e.g., [`char`], but not for `&str`. /// /// If the pattern allows a reverse search but its results might differ /// from a forward search, the [`rmatch_indices`] method can be used. /// /// [`rmatch_indices`]: str::rmatch_indices /// /// # Examples /// /// Basic usage: /// /// ``` /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); /// /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); /// assert_eq!(v, [(1, "abc"), (4, "abc")]); /// /// let v: Vec<_> = "ababa".match_indices("aba").collect(); /// assert_eq!(v, [(0, "aba")]); // only the first `aba` /// ``` #[stable(feature = "str_match_indices", since = "1.5.0")] #[inline] pub fn match_indices<'a, P: Pattern<'a>>(&'a self, pat: P) -> MatchIndices<'a, P> { MatchIndices(MatchIndicesInternal(pat.into_searcher(self))) } /// An iterator over the disjoint matches of a pattern within `self`, /// yielded in reverse order along with the index of the match. /// /// For matches of `pat` within `self` that overlap, only the indices /// corresponding to the last match are returned. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Iterator behavior /// /// The returned iterator requires that the pattern supports a reverse /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse /// search yields the same elements. /// /// For iterating from the front, the [`match_indices`] method can be used. /// /// [`match_indices`]: str::match_indices /// /// # Examples /// /// Basic usage: /// /// ``` /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); /// /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); /// assert_eq!(v, [(4, "abc"), (1, "abc")]); /// /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); /// assert_eq!(v, [(2, "aba")]); // only the last `aba` /// ``` #[stable(feature = "str_match_indices", since = "1.5.0")] #[inline] pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { RMatchIndices(self.match_indices(pat).0) } /// Returns a string slice with leading and trailing whitespace removed. /// /// 'Whitespace' is defined according to the terms of the Unicode Derived /// Core Property `White_Space`, which includes newlines. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = "\n Hello\tworld\t\n"; /// /// assert_eq!("Hello\tworld", s.trim()); /// ``` #[inline] #[must_use = "this returns the trimmed string as a slice, \ without modifying the original"] #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim")] pub fn trim(&self) -> &str { self.trim_matches(|c: char| c.is_whitespace()) } /// Returns a string slice with leading whitespace removed. /// /// 'Whitespace' is defined according to the terms of the Unicode Derived /// Core Property `White_Space`, which includes newlines. /// /// # Text directionality /// /// A string is a sequence of bytes. `start` in this context means the first /// position of that byte string; for a left-to-right language like English or /// Russian, this will be left side, and for right-to-left languages like /// Arabic or Hebrew, this will be the right side. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = "\n Hello\tworld\t\n"; /// assert_eq!("Hello\tworld\t\n", s.trim_start()); /// ``` /// /// Directionality: /// /// ``` /// let s = " English "; /// assert!(Some('E') == s.trim_start().chars().next()); /// /// let s = " עברית "; /// assert!(Some('ע') == s.trim_start().chars().next()); /// ``` #[inline] #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[stable(feature = "trim_direction", since = "1.30.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_start")] pub fn trim_start(&self) -> &str { self.trim_start_matches(|c: char| c.is_whitespace()) } /// Returns a string slice with trailing whitespace removed. /// /// 'Whitespace' is defined according to the terms of the Unicode Derived /// Core Property `White_Space`, which includes newlines. /// /// # Text directionality /// /// A string is a sequence of bytes. `end` in this context means the last /// position of that byte string; for a left-to-right language like English or /// Russian, this will be right side, and for right-to-left languages like /// Arabic or Hebrew, this will be the left side. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = "\n Hello\tworld\t\n"; /// assert_eq!("\n Hello\tworld", s.trim_end()); /// ``` /// /// Directionality: /// /// ``` /// let s = " English "; /// assert!(Some('h') == s.trim_end().chars().rev().next()); /// /// let s = " עברית "; /// assert!(Some('ת') == s.trim_end().chars().rev().next()); /// ``` #[inline] #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[stable(feature = "trim_direction", since = "1.30.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "str_trim_end")] pub fn trim_end(&self) -> &str { self.trim_end_matches(|c: char| c.is_whitespace()) } /// Returns a string slice with leading whitespace removed. /// /// 'Whitespace' is defined according to the terms of the Unicode Derived /// Core Property `White_Space`. /// /// # Text directionality /// /// A string is a sequence of bytes. 'Left' in this context means the first /// position of that byte string; for a language like Arabic or Hebrew /// which are 'right to left' rather than 'left to right', this will be /// the _right_ side, not the left. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = " Hello\tworld\t"; /// /// assert_eq!("Hello\tworld\t", s.trim_left()); /// ``` /// /// Directionality: /// /// ``` /// let s = " English"; /// assert!(Some('E') == s.trim_left().chars().next()); /// /// let s = " עברית"; /// assert!(Some('ע') == s.trim_left().chars().next()); /// ``` #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")] pub fn trim_left(&self) -> &str { self.trim_start() } /// Returns a string slice with trailing whitespace removed. /// /// 'Whitespace' is defined according to the terms of the Unicode Derived /// Core Property `White_Space`. /// /// # Text directionality /// /// A string is a sequence of bytes. 'Right' in this context means the last /// position of that byte string; for a language like Arabic or Hebrew /// which are 'right to left' rather than 'left to right', this will be /// the _left_ side, not the right. /// /// # Examples /// /// Basic usage: /// /// ``` /// let s = " Hello\tworld\t"; /// /// assert_eq!(" Hello\tworld", s.trim_right()); /// ``` /// /// Directionality: /// /// ``` /// let s = "English "; /// assert!(Some('h') == s.trim_right().chars().rev().next()); /// /// let s = "עברית "; /// assert!(Some('ת') == s.trim_right().chars().rev().next()); /// ``` #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[inline] #[stable(feature = "rust1", since = "1.0.0")] #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")] pub fn trim_right(&self) -> &str { self.trim_end() } /// Returns a string slice with all prefixes and suffixes that match a /// pattern repeatedly removed. /// /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function /// or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// Simple patterns: /// /// ``` /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); /// /// let x: &[_] = &['1', '2']; /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar"); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar"); /// ``` #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[stable(feature = "rust1", since = "1.0.0")] pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where P: Pattern<'a, Searcher: DoubleEndedSearcher<'a>>, { let mut i = 0; let mut j = 0; let mut matcher = pat.into_searcher(self); if let Some((a, b)) = matcher.next_reject() { i = a; j = b; // Remember earliest known match, correct it below if // last match is different } if let Some((_, b)) = matcher.next_reject_back() { j = b; } // SAFETY: `Searcher` is known to return valid indices. unsafe { self.get_unchecked(i..j) } } /// Returns a string slice with all prefixes that match a pattern /// repeatedly removed. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Text directionality /// /// A string is a sequence of bytes. `start` in this context means the first /// position of that byte string; for a left-to-right language like English or /// Russian, this will be left side, and for right-to-left languages like /// Arabic or Hebrew, this will be the right side. /// /// # Examples /// /// Basic usage: /// /// ``` /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11"); /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123"); /// /// let x: &[_] = &['1', '2']; /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12"); /// ``` #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[stable(feature = "trim_direction", since = "1.30.0")] pub fn trim_start_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { let mut i = self.len(); let mut matcher = pat.into_searcher(self); if let Some((a, _)) = matcher.next_reject() { i = a; } // SAFETY: `Searcher` is known to return valid indices. unsafe { self.get_unchecked(i..self.len()) } } /// Returns a string slice with the prefix removed. /// /// If the string starts with the pattern `prefix`, returns substring after the prefix, wrapped /// in `Some`. Unlike `trim_start_matches`, this method removes the prefix exactly once. /// /// If the string does not start with `prefix`, returns `None`. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// ``` /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar")); /// assert_eq!("foo:bar".strip_prefix("bar"), None); /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo")); /// ``` #[must_use = "this returns the remaining substring as a new slice, \ without modifying the original"] #[stable(feature = "str_strip", since = "1.45.0")] pub fn strip_prefix<'a, P: Pattern<'a>>(&'a self, prefix: P) -> Option<&'a str> { prefix.strip_prefix_of(self) } /// Returns a string slice with the suffix removed. /// /// If the string ends with the pattern `suffix`, returns the substring before the suffix, /// wrapped in `Some`. Unlike `trim_end_matches`, this method removes the suffix exactly once. /// /// If the string does not end with `suffix`, returns `None`. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Examples /// /// ``` /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar")); /// assert_eq!("bar:foo".strip_suffix("bar"), None); /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo")); /// ``` #[must_use = "this returns the remaining substring as a new slice, \ without modifying the original"] #[stable(feature = "str_strip", since = "1.45.0")] pub fn strip_suffix<'a, P>(&'a self, suffix: P) -> Option<&'a str> where P: Pattern<'a>,

>::Searcher: ReverseSearcher<'a>, { suffix.strip_suffix_of(self) } /// Returns a string slice with all suffixes that match a pattern /// repeatedly removed. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Text directionality /// /// A string is a sequence of bytes. `end` in this context means the last /// position of that byte string; for a left-to-right language like English or /// Russian, this will be right side, and for right-to-left languages like /// Arabic or Hebrew, this will be the left side. /// /// # Examples /// /// Simple patterns: /// /// ``` /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar"); /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar"); /// /// let x: &[_] = &['1', '2']; /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar"); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo"); /// ``` #[must_use = "this returns the trimmed string as a new slice, \ without modifying the original"] #[stable(feature = "trim_direction", since = "1.30.0")] pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { let mut j = 0; let mut matcher = pat.into_searcher(self); if let Some((_, b)) = matcher.next_reject_back() { j = b; } // SAFETY: `Searcher` is known to return valid indices. unsafe { self.get_unchecked(0..j) } } /// Returns a string slice with all prefixes that match a pattern /// repeatedly removed. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Text directionality /// /// A string is a sequence of bytes. 'Left' in this context means the first /// position of that byte string; for a language like Arabic or Hebrew /// which are 'right to left' rather than 'left to right', this will be /// the _right_ side, not the left. /// /// # Examples /// /// Basic usage: /// /// ``` /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); /// /// let x: &[_] = &['1', '2']; /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[deprecated( since = "1.33.0", note = "superseded by `trim_start_matches`", suggestion = "trim_start_matches" )] pub fn trim_left_matches<'a, P: Pattern<'a>>(&'a self, pat: P) -> &'a str { self.trim_start_matches(pat) } /// Returns a string slice with all suffixes that match a pattern /// repeatedly removed. /// /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a /// function or closure that determines if a character matches. /// /// [`char`]: prim@char /// [pattern]: self::pattern /// /// # Text directionality /// /// A string is a sequence of bytes. 'Right' in this context means the last /// position of that byte string; for a language like Arabic or Hebrew /// which are 'right to left' rather than 'left to right', this will be /// the _left_ side, not the right. /// /// # Examples /// /// Simple patterns: /// /// ``` /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); /// /// let x: &[_] = &['1', '2']; /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar"); /// ``` /// /// A more complex pattern, using a closure: /// /// ``` /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[deprecated( since = "1.33.0", note = "superseded by `trim_end_matches`", suggestion = "trim_end_matches" )] pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where P: Pattern<'a, Searcher: ReverseSearcher<'a>>, { self.trim_end_matches(pat) } /// Parses this string slice into another type. /// /// Because `parse` is so general, it can cause problems with type /// inference. As such, `parse` is one of the few times you'll see /// the syntax affectionately known as the 'turbofish': `::<>`. This /// helps the inference algorithm understand specifically which type /// you're trying to parse into. /// /// `parse` can parse into any type that implements the [`FromStr`] trait. /// /// # Errors /// /// Will return [`Err`] if it's not possible to parse this string slice into /// the desired type. /// /// [`Err`]: FromStr::Err /// /// # Examples /// /// Basic usage /// /// ``` /// let four: u32 = "4".parse().unwrap(); /// /// assert_eq!(4, four); /// ``` /// /// Using the 'turbofish' instead of annotating `four`: /// /// ``` /// let four = "4".parse::(); /// /// assert_eq!(Ok(4), four); /// ``` /// /// Failing to parse: /// /// ``` /// let nope = "j".parse::(); /// /// assert!(nope.is_err()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn parse(&self) -> Result { FromStr::from_str(self) } /// Checks if all characters in this string are within the ASCII range. /// /// # Examples /// /// ``` /// let ascii = "hello!\n"; /// let non_ascii = "Grüße, Jürgen ❤"; /// /// assert!(ascii.is_ascii()); /// assert!(!non_ascii.is_ascii()); /// ``` #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[must_use] #[inline] pub fn is_ascii(&self) -> bool { // We can treat each byte as character here: all multibyte characters // start with a byte that is not in the ASCII range, so we will stop // there already. self.as_bytes().is_ascii() } /// Checks that two strings are an ASCII case-insensitive match. /// /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, /// but without allocating and copying temporaries. /// /// # Examples /// /// ``` /// assert!("Ferris".eq_ignore_ascii_case("FERRIS")); /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS")); /// ``` #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[must_use] #[inline] pub fn eq_ignore_ascii_case(&self, other: &str) -> bool { self.as_bytes().eq_ignore_ascii_case(other.as_bytes()) } /// Converts this string to its ASCII upper case equivalent in-place. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To return a new uppercased value without modifying the existing one, use /// [`to_ascii_uppercase()`]. /// /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase /// /// # Examples /// /// ``` /// let mut s = String::from("Grüße, Jürgen ❤"); /// /// s.make_ascii_uppercase(); /// /// assert_eq!("GRüßE, JüRGEN ❤", s); /// ``` #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn make_ascii_uppercase(&mut self) { // SAFETY: changing ASCII letters only does not invalidate UTF-8. let me = unsafe { self.as_bytes_mut() }; me.make_ascii_uppercase() } /// Converts this string to its ASCII lower case equivalent in-place. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To return a new lowercased value without modifying the existing one, use /// [`to_ascii_lowercase()`]. /// /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase /// /// # Examples /// /// ``` /// let mut s = String::from("GRÜßE, JÜRGEN ❤"); /// /// s.make_ascii_lowercase(); /// /// assert_eq!("grÜße, jÜrgen ❤", s); /// ``` #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn make_ascii_lowercase(&mut self) { // SAFETY: changing ASCII letters only does not invalidate UTF-8. let me = unsafe { self.as_bytes_mut() }; me.make_ascii_lowercase() } /// Return an iterator that escapes each char in `self` with [`char::escape_debug`]. /// /// Note: only extended grapheme codepoints that begin the string will be /// escaped. /// /// # Examples /// /// As an iterator: /// /// ``` /// for c in "❤\n!".escape_debug() { /// print!("{c}"); /// } /// println!(); /// ``` /// /// Using `println!` directly: /// /// ``` /// println!("{}", "❤\n!".escape_debug()); /// ``` /// /// /// Both are equivalent to: /// /// ``` /// println!("❤\\n!"); /// ``` /// /// Using `to_string`: /// /// ``` /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!"); /// ``` #[must_use = "this returns the escaped string as an iterator, \ without modifying the original"] #[stable(feature = "str_escape", since = "1.34.0")] pub fn escape_debug(&self) -> EscapeDebug<'_> { let mut chars = self.chars(); EscapeDebug { inner: chars .next() .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL)) .into_iter() .flatten() .chain(chars.flat_map(CharEscapeDebugContinue)), } } /// Return an iterator that escapes each char in `self` with [`char::escape_default`]. /// /// # Examples /// /// As an iterator: /// /// ``` /// for c in "❤\n!".escape_default() { /// print!("{c}"); /// } /// println!(); /// ``` /// /// Using `println!` directly: /// /// ``` /// println!("{}", "❤\n!".escape_default()); /// ``` /// /// /// Both are equivalent to: /// /// ``` /// println!("\\u{{2764}}\\n!"); /// ``` /// /// Using `to_string`: /// /// ``` /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!"); /// ``` #[must_use = "this returns the escaped string as an iterator, \ without modifying the original"] #[stable(feature = "str_escape", since = "1.34.0")] pub fn escape_default(&self) -> EscapeDefault<'_> { EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) } } /// Return an iterator that escapes each char in `self` with [`char::escape_unicode`]. /// /// # Examples /// /// As an iterator: /// /// ``` /// for c in "❤\n!".escape_unicode() { /// print!("{c}"); /// } /// println!(); /// ``` /// /// Using `println!` directly: /// /// ``` /// println!("{}", "❤\n!".escape_unicode()); /// ``` /// /// /// Both are equivalent to: /// /// ``` /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}"); /// ``` /// /// Using `to_string`: /// /// ``` /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}"); /// ``` #[must_use = "this returns the escaped string as an iterator, \ without modifying the original"] #[stable(feature = "str_escape", since = "1.34.0")] pub fn escape_unicode(&self) -> EscapeUnicode<'_> { EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) } } } #[stable(feature = "rust1", since = "1.0.0")] impl AsRef<[u8]> for str { #[inline] fn as_ref(&self) -> &[u8] { self.as_bytes() } } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_default_impls", issue = "87864")] impl const Default for &str { /// Creates an empty str #[inline] fn default() -> Self { "" } } #[stable(feature = "default_mut_str", since = "1.28.0")] impl Default for &mut str { /// Creates an empty mutable str #[inline] fn default() -> Self { // SAFETY: The empty string is valid UTF-8. unsafe { from_utf8_unchecked_mut(&mut []) } } } impl_fn_for_zst! { /// A nameable, cloneable fn type #[derive(Clone)] struct LinesAnyMap impl<'a> Fn = |line: &'a str| -> &'a str { let l = line.len(); if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] } else { line } }; #[derive(Clone)] struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug { c.escape_debug_ext(EscapeDebugExtArgs { escape_grapheme_extended: false, escape_single_quote: true, escape_double_quote: true }) }; #[derive(Clone)] struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode { c.escape_unicode() }; #[derive(Clone)] struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault { c.escape_default() }; #[derive(Clone)] struct IsWhitespace impl Fn = |c: char| -> bool { c.is_whitespace() }; #[derive(Clone)] struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool { byte.is_ascii_whitespace() }; #[derive(Clone)] struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool { !s.is_empty() }; #[derive(Clone)] struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool { !s.is_empty() }; #[derive(Clone)] struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str { // SAFETY: not safe unsafe { from_utf8_unchecked(bytes) } }; } #[stable(feature = "rust1", since = "1.0.0")] #[cfg(not(bootstrap))] impl !crate::error::Error for &str {}