//! Operations related to UTF-8 validation. use crate::mem; use super::Utf8Error; /// Returns the initial codepoint accumulator for the first byte. /// The first byte is special, only want bottom 5 bits for width 2, 4 bits /// for width 3, and 3 bits for width 4. #[inline] const fn utf8_first_byte(byte: u8, width: u32) -> u32 { (byte & (0x7F >> width)) as u32 } /// Returns the value of `ch` updated with continuation byte `byte`. #[inline] const fn utf8_acc_cont_byte(ch: u32, byte: u8) -> u32 { (ch << 6) | (byte & CONT_MASK) as u32 } /// Checks whether the byte is a UTF-8 continuation byte (i.e., starts with the /// bits `10`). #[inline] pub(super) const fn utf8_is_cont_byte(byte: u8) -> bool { (byte as i8) < -64 } /// Reads the next code point out of a byte iterator (assuming a /// UTF-8-like encoding). /// /// # Safety /// /// `bytes` must produce a valid UTF-8-like (UTF-8 or WTF-8) string #[unstable(feature = "str_internals", issue = "none")] #[inline] pub unsafe fn next_code_point<'a, I: Iterator>(bytes: &mut I) -> Option { // Decode UTF-8 let x = *bytes.next()?; if x < 128 { return Some(x as u32); } // Multibyte case follows // Decode from a byte combination out of: [[[x y] z] w] // NOTE: Performance is sensitive to the exact formulation here let init = utf8_first_byte(x, 2); // SAFETY: `bytes` produces an UTF-8-like string, // so the iterator must produce a value here. let y = unsafe { *bytes.next().unwrap_unchecked() }; let mut ch = utf8_acc_cont_byte(init, y); if x >= 0xE0 { // [[x y z] w] case // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid // SAFETY: `bytes` produces an UTF-8-like string, // so the iterator must produce a value here. let z = unsafe { *bytes.next().unwrap_unchecked() }; let y_z = utf8_acc_cont_byte((y & CONT_MASK) as u32, z); ch = init << 12 | y_z; if x >= 0xF0 { // [x y z w] case // use only the lower 3 bits of `init` // SAFETY: `bytes` produces an UTF-8-like string, // so the iterator must produce a value here. let w = unsafe { *bytes.next().unwrap_unchecked() }; ch = (init & 7) << 18 | utf8_acc_cont_byte(y_z, w); } } Some(ch) } /// Reads the last code point out of a byte iterator (assuming a /// UTF-8-like encoding). /// /// # Safety /// /// `bytes` must produce a valid UTF-8-like (UTF-8 or WTF-8) string #[inline] pub(super) unsafe fn next_code_point_reverse<'a, I>(bytes: &mut I) -> Option where I: DoubleEndedIterator, { // Decode UTF-8 let w = match *bytes.next_back()? { next_byte if next_byte < 128 => return Some(next_byte as u32), back_byte => back_byte, }; // Multibyte case follows // Decode from a byte combination out of: [x [y [z w]]] let mut ch; // SAFETY: `bytes` produces an UTF-8-like string, // so the iterator must produce a value here. let z = unsafe { *bytes.next_back().unwrap_unchecked() }; ch = utf8_first_byte(z, 2); if utf8_is_cont_byte(z) { // SAFETY: `bytes` produces an UTF-8-like string, // so the iterator must produce a value here. let y = unsafe { *bytes.next_back().unwrap_unchecked() }; ch = utf8_first_byte(y, 3); if utf8_is_cont_byte(y) { // SAFETY: `bytes` produces an UTF-8-like string, // so the iterator must produce a value here. let x = unsafe { *bytes.next_back().unwrap_unchecked() }; ch = utf8_first_byte(x, 4); ch = utf8_acc_cont_byte(ch, y); } ch = utf8_acc_cont_byte(ch, z); } ch = utf8_acc_cont_byte(ch, w); Some(ch) } const NONASCII_MASK: usize = usize::repeat_u8(0x80); /// Returns `true` if any byte in the word `x` is nonascii (>= 128). #[inline] const fn contains_nonascii(x: usize) -> bool { (x & NONASCII_MASK) != 0 } /// Walks through `v` checking that it's a valid UTF-8 sequence, /// returning `Ok(())` in that case, or, if it is invalid, `Err(err)`. #[inline(always)] #[rustc_const_unstable(feature = "str_internals", issue = "none")] pub(super) const fn run_utf8_validation(v: &[u8]) -> Result<(), Utf8Error> { let mut index = 0; let len = v.len(); let usize_bytes = mem::size_of::(); let ascii_block_size = 2 * usize_bytes; let blocks_end = if len >= ascii_block_size { len - ascii_block_size + 1 } else { 0 }; let align = v.as_ptr().align_offset(usize_bytes); while index < len { let old_offset = index; macro_rules! err { ($error_len: expr) => { return Err(Utf8Error { valid_up_to: old_offset, error_len: $error_len }) }; } macro_rules! next { () => {{ index += 1; // we needed data, but there was none: error! if index >= len { err!(None) } v[index] }}; } let first = v[index]; if first >= 128 { let w = utf8_char_width(first); // 2-byte encoding is for codepoints \u{0080} to \u{07ff} // first C2 80 last DF BF // 3-byte encoding is for codepoints \u{0800} to \u{ffff} // first E0 A0 80 last EF BF BF // excluding surrogates codepoints \u{d800} to \u{dfff} // ED A0 80 to ED BF BF // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff // first F0 90 80 80 last F4 8F BF BF // // Use the UTF-8 syntax from the RFC // // https://tools.ietf.org/html/rfc3629 // UTF8-1 = %x00-7F // UTF8-2 = %xC2-DF UTF8-tail // UTF8-3 = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) / // %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail ) // UTF8-4 = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) / // %xF4 %x80-8F 2( UTF8-tail ) match w { 2 => { if next!() as i8 >= -64 { err!(Some(1)) } } 3 => { match (first, next!()) { (0xE0, 0xA0..=0xBF) | (0xE1..=0xEC, 0x80..=0xBF) | (0xED, 0x80..=0x9F) | (0xEE..=0xEF, 0x80..=0xBF) => {} _ => err!(Some(1)), } if next!() as i8 >= -64 { err!(Some(2)) } } 4 => { match (first, next!()) { (0xF0, 0x90..=0xBF) | (0xF1..=0xF3, 0x80..=0xBF) | (0xF4, 0x80..=0x8F) => {} _ => err!(Some(1)), } if next!() as i8 >= -64 { err!(Some(2)) } if next!() as i8 >= -64 { err!(Some(3)) } } _ => err!(Some(1)), } index += 1; } else { // Ascii case, try to skip forward quickly. // When the pointer is aligned, read 2 words of data per iteration // until we find a word containing a non-ascii byte. if align != usize::MAX && align.wrapping_sub(index) % usize_bytes == 0 { let ptr = v.as_ptr(); while index < blocks_end { // SAFETY: since `align - index` and `ascii_block_size` are // multiples of `usize_bytes`, `block = ptr.add(index)` is // always aligned with a `usize` so it's safe to dereference // both `block` and `block.add(1)`. unsafe { let block = ptr.add(index) as *const usize; // break if there is a nonascii byte let zu = contains_nonascii(*block); let zv = contains_nonascii(*block.add(1)); if zu || zv { break; } } index += ascii_block_size; } // step from the point where the wordwise loop stopped while index < len && v[index] < 128 { index += 1; } } else { index += 1; } } } Ok(()) } // https://tools.ietf.org/html/rfc3629 const UTF8_CHAR_WIDTH: &[u8; 256] = &[ // 1 2 3 4 5 6 7 8 9 A B C D E F 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // F ]; /// Given a first byte, determines how many bytes are in this UTF-8 character. #[unstable(feature = "str_internals", issue = "none")] #[must_use] #[inline] pub const fn utf8_char_width(b: u8) -> usize { UTF8_CHAR_WIDTH[b as usize] as usize } /// Mask of the value bits of a continuation byte. const CONT_MASK: u8 = 0b0011_1111;