#![stable(feature = "duration_core", since = "1.25.0")] //! Temporal quantification. //! //! # Examples: //! //! There are multiple ways to create a new [`Duration`]: //! //! ``` //! # use std::time::Duration; //! let five_seconds = Duration::from_secs(5); //! assert_eq!(five_seconds, Duration::from_millis(5_000)); //! assert_eq!(five_seconds, Duration::from_micros(5_000_000)); //! assert_eq!(five_seconds, Duration::from_nanos(5_000_000_000)); //! //! let ten_seconds = Duration::from_secs(10); //! let seven_nanos = Duration::from_nanos(7); //! let total = ten_seconds + seven_nanos; //! assert_eq!(total, Duration::new(10, 7)); //! ``` use crate::fmt; use crate::iter::Sum; use crate::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Sub, SubAssign}; const NANOS_PER_SEC: u32 = 1_000_000_000; const NANOS_PER_MILLI: u32 = 1_000_000; const NANOS_PER_MICRO: u32 = 1_000; const MILLIS_PER_SEC: u64 = 1_000; const MICROS_PER_SEC: u64 = 1_000_000; /// A `Duration` type to represent a span of time, typically used for system /// timeouts. /// /// Each `Duration` is composed of a whole number of seconds and a fractional part /// represented in nanoseconds. If the underlying system does not support /// nanosecond-level precision, APIs binding a system timeout will typically round up /// the number of nanoseconds. /// /// [`Duration`]s implement many common traits, including [`Add`], [`Sub`], and other /// [`ops`] traits. It implements [`Default`] by returning a zero-length `Duration`. /// /// [`ops`]: crate::ops /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let five_seconds = Duration::new(5, 0); /// let five_seconds_and_five_nanos = five_seconds + Duration::new(0, 5); /// /// assert_eq!(five_seconds_and_five_nanos.as_secs(), 5); /// assert_eq!(five_seconds_and_five_nanos.subsec_nanos(), 5); /// /// let ten_millis = Duration::from_millis(10); /// ``` /// /// # Formatting `Duration` values /// /// `Duration` intentionally does not have a `Display` impl, as there are a /// variety of ways to format spans of time for human readability. `Duration` /// provides a `Debug` impl that shows the full precision of the value. /// /// The `Debug` output uses the non-ASCII "µs" suffix for microseconds. If your /// program output may appear in contexts that cannot rely on full Unicode /// compatibility, you may wish to format `Duration` objects yourself or use a /// crate to do so. #[stable(feature = "duration", since = "1.3.0")] #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] #[cfg_attr(not(test), rustc_diagnostic_item = "Duration")] pub struct Duration { secs: u64, nanos: u32, // Always 0 <= nanos < NANOS_PER_SEC } impl Duration { /// The duration of one second. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::SECOND, Duration::from_secs(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const SECOND: Duration = Duration::from_secs(1); /// The duration of one millisecond. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::MILLISECOND, Duration::from_millis(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const MILLISECOND: Duration = Duration::from_millis(1); /// The duration of one microsecond. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::MICROSECOND, Duration::from_micros(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const MICROSECOND: Duration = Duration::from_micros(1); /// The duration of one nanosecond. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::NANOSECOND, Duration::from_nanos(1)); /// ``` #[unstable(feature = "duration_constants", issue = "57391")] pub const NANOSECOND: Duration = Duration::from_nanos(1); /// A duration of zero time. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::ZERO; /// assert!(duration.is_zero()); /// assert_eq!(duration.as_nanos(), 0); /// ``` #[stable(feature = "duration_zero", since = "1.53.0")] pub const ZERO: Duration = Duration::from_nanos(0); /// The maximum duration. /// /// May vary by platform as necessary. Must be able to contain the difference between /// two instances of [`Instant`] or two instances of [`SystemTime`]. /// This constraint gives it a value of about 584,942,417,355 years in practice, /// which is currently used on all platforms. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::MAX, Duration::new(u64::MAX, 1_000_000_000 - 1)); /// ``` /// [`Instant`]: ../../std/time/struct.Instant.html /// [`SystemTime`]: ../../std/time/struct.SystemTime.html #[stable(feature = "duration_saturating_ops", since = "1.53.0")] pub const MAX: Duration = Duration::new(u64::MAX, NANOS_PER_SEC - 1); /// Creates a new `Duration` from the specified number of whole seconds and /// additional nanoseconds. /// /// If the number of nanoseconds is greater than 1 billion (the number of /// nanoseconds in a second), then it will carry over into the seconds provided. /// /// # Panics /// /// This constructor will panic if the carry from the nanoseconds overflows /// the seconds counter. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let five_seconds = Duration::new(5, 0); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[inline] #[must_use] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn new(secs: u64, nanos: u32) -> Duration { let secs = match secs.checked_add((nanos / NANOS_PER_SEC) as u64) { Some(secs) => secs, None => panic!("overflow in Duration::new"), }; let nanos = nanos % NANOS_PER_SEC; Duration { secs, nanos } } /// Creates a new `Duration` from the specified number of whole seconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_secs(5); /// /// assert_eq!(5, duration.as_secs()); /// assert_eq!(0, duration.subsec_nanos()); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[must_use] #[inline] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] pub const fn from_secs(secs: u64) -> Duration { Duration { secs, nanos: 0 } } /// Creates a new `Duration` from the specified number of milliseconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_millis(2569); /// /// assert_eq!(2, duration.as_secs()); /// assert_eq!(569_000_000, duration.subsec_nanos()); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[must_use] #[inline] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] pub const fn from_millis(millis: u64) -> Duration { Duration { secs: millis / MILLIS_PER_SEC, nanos: ((millis % MILLIS_PER_SEC) as u32) * NANOS_PER_MILLI, } } /// Creates a new `Duration` from the specified number of microseconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_micros(1_000_002); /// /// assert_eq!(1, duration.as_secs()); /// assert_eq!(2000, duration.subsec_nanos()); /// ``` #[stable(feature = "duration_from_micros", since = "1.27.0")] #[must_use] #[inline] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] pub const fn from_micros(micros: u64) -> Duration { Duration { secs: micros / MICROS_PER_SEC, nanos: ((micros % MICROS_PER_SEC) as u32) * NANOS_PER_MICRO, } } /// Creates a new `Duration` from the specified number of nanoseconds. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_nanos(1_000_000_123); /// /// assert_eq!(1, duration.as_secs()); /// assert_eq!(123, duration.subsec_nanos()); /// ``` #[stable(feature = "duration_extras", since = "1.27.0")] #[must_use] #[inline] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] pub const fn from_nanos(nanos: u64) -> Duration { Duration { secs: nanos / (NANOS_PER_SEC as u64), nanos: (nanos % (NANOS_PER_SEC as u64)) as u32, } } /// Returns true if this `Duration` spans no time. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// assert!(Duration::ZERO.is_zero()); /// assert!(Duration::new(0, 0).is_zero()); /// assert!(Duration::from_nanos(0).is_zero()); /// assert!(Duration::from_secs(0).is_zero()); /// /// assert!(!Duration::new(1, 1).is_zero()); /// assert!(!Duration::from_nanos(1).is_zero()); /// assert!(!Duration::from_secs(1).is_zero()); /// ``` #[must_use] #[stable(feature = "duration_zero", since = "1.53.0")] #[rustc_const_stable(feature = "duration_zero", since = "1.53.0")] #[inline] pub const fn is_zero(&self) -> bool { self.secs == 0 && self.nanos == 0 } /// Returns the number of _whole_ seconds contained by this `Duration`. /// /// The returned value does not include the fractional (nanosecond) part of the /// duration, which can be obtained using [`subsec_nanos`]. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_secs(), 5); /// ``` /// /// To determine the total number of seconds represented by the `Duration` /// including the fractional part, use [`as_secs_f64`] or [`as_secs_f32`] /// /// [`as_secs_f64`]: Duration::as_secs_f64 /// [`as_secs_f32`]: Duration::as_secs_f32 /// [`subsec_nanos`]: Duration::subsec_nanos #[stable(feature = "duration", since = "1.3.0")] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] #[must_use] #[inline] pub const fn as_secs(&self) -> u64 { self.secs } /// Returns the fractional part of this `Duration`, in whole milliseconds. /// /// This method does **not** return the length of the duration when /// represented by milliseconds. The returned number always represents a /// fractional portion of a second (i.e., it is less than one thousand). /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_millis(5432); /// assert_eq!(duration.as_secs(), 5); /// assert_eq!(duration.subsec_millis(), 432); /// ``` #[stable(feature = "duration_extras", since = "1.27.0")] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] #[must_use] #[inline] pub const fn subsec_millis(&self) -> u32 { self.nanos / NANOS_PER_MILLI } /// Returns the fractional part of this `Duration`, in whole microseconds. /// /// This method does **not** return the length of the duration when /// represented by microseconds. The returned number always represents a /// fractional portion of a second (i.e., it is less than one million). /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_micros(1_234_567); /// assert_eq!(duration.as_secs(), 1); /// assert_eq!(duration.subsec_micros(), 234_567); /// ``` #[stable(feature = "duration_extras", since = "1.27.0")] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] #[must_use] #[inline] pub const fn subsec_micros(&self) -> u32 { self.nanos / NANOS_PER_MICRO } /// Returns the fractional part of this `Duration`, in nanoseconds. /// /// This method does **not** return the length of the duration when /// represented by nanoseconds. The returned number always represents a /// fractional portion of a second (i.e., it is less than one billion). /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::from_millis(5010); /// assert_eq!(duration.as_secs(), 5); /// assert_eq!(duration.subsec_nanos(), 10_000_000); /// ``` #[stable(feature = "duration", since = "1.3.0")] #[rustc_const_stable(feature = "duration_consts", since = "1.32.0")] #[must_use] #[inline] pub const fn subsec_nanos(&self) -> u32 { self.nanos } /// Returns the total number of whole milliseconds contained by this `Duration`. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_millis(), 5730); /// ``` #[stable(feature = "duration_as_u128", since = "1.33.0")] #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")] #[must_use] #[inline] pub const fn as_millis(&self) -> u128 { self.secs as u128 * MILLIS_PER_SEC as u128 + (self.nanos / NANOS_PER_MILLI) as u128 } /// Returns the total number of whole microseconds contained by this `Duration`. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_micros(), 5730023); /// ``` #[stable(feature = "duration_as_u128", since = "1.33.0")] #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")] #[must_use] #[inline] pub const fn as_micros(&self) -> u128 { self.secs as u128 * MICROS_PER_SEC as u128 + (self.nanos / NANOS_PER_MICRO) as u128 } /// Returns the total number of nanoseconds contained by this `Duration`. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// let duration = Duration::new(5, 730023852); /// assert_eq!(duration.as_nanos(), 5730023852); /// ``` #[stable(feature = "duration_as_u128", since = "1.33.0")] #[rustc_const_stable(feature = "duration_as_u128", since = "1.33.0")] #[must_use] #[inline] pub const fn as_nanos(&self) -> u128 { self.secs as u128 * NANOS_PER_SEC as u128 + self.nanos as u128 } /// Checked `Duration` addition. Computes `self + other`, returning [`None`] /// if overflow occurred. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 0).checked_add(Duration::new(0, 1)), Some(Duration::new(0, 1))); /// assert_eq!(Duration::new(1, 0).checked_add(Duration::new(u64::MAX, 0)), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn checked_add(self, rhs: Duration) -> Option { if let Some(mut secs) = self.secs.checked_add(rhs.secs) { let mut nanos = self.nanos + rhs.nanos; if nanos >= NANOS_PER_SEC { nanos -= NANOS_PER_SEC; if let Some(new_secs) = secs.checked_add(1) { secs = new_secs; } else { return None; } } debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos }) } else { None } } /// Saturating `Duration` addition. Computes `self + other`, returning [`Duration::MAX`] /// if overflow occurred. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 0).saturating_add(Duration::new(0, 1)), Duration::new(0, 1)); /// assert_eq!(Duration::new(1, 0).saturating_add(Duration::new(u64::MAX, 0)), Duration::MAX); /// ``` #[stable(feature = "duration_saturating_ops", since = "1.53.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn saturating_add(self, rhs: Duration) -> Duration { match self.checked_add(rhs) { Some(res) => res, None => Duration::MAX, } } /// Checked `Duration` subtraction. Computes `self - other`, returning [`None`] /// if the result would be negative or if overflow occurred. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 1).checked_sub(Duration::new(0, 0)), Some(Duration::new(0, 1))); /// assert_eq!(Duration::new(0, 0).checked_sub(Duration::new(0, 1)), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn checked_sub(self, rhs: Duration) -> Option { if let Some(mut secs) = self.secs.checked_sub(rhs.secs) { let nanos = if self.nanos >= rhs.nanos { self.nanos - rhs.nanos } else if let Some(sub_secs) = secs.checked_sub(1) { secs = sub_secs; self.nanos + NANOS_PER_SEC - rhs.nanos } else { return None; }; debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos }) } else { None } } /// Saturating `Duration` subtraction. Computes `self - other`, returning [`Duration::ZERO`] /// if the result would be negative or if overflow occurred. /// /// # Examples /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 1).saturating_sub(Duration::new(0, 0)), Duration::new(0, 1)); /// assert_eq!(Duration::new(0, 0).saturating_sub(Duration::new(0, 1)), Duration::ZERO); /// ``` #[stable(feature = "duration_saturating_ops", since = "1.53.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn saturating_sub(self, rhs: Duration) -> Duration { match self.checked_sub(rhs) { Some(res) => res, None => Duration::ZERO, } } /// Checked `Duration` multiplication. Computes `self * other`, returning /// [`None`] if overflow occurred. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 500_000_001).checked_mul(2), Some(Duration::new(1, 2))); /// assert_eq!(Duration::new(u64::MAX - 1, 0).checked_mul(2), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn checked_mul(self, rhs: u32) -> Option { // Multiply nanoseconds as u64, because it cannot overflow that way. let total_nanos = self.nanos as u64 * rhs as u64; let extra_secs = total_nanos / (NANOS_PER_SEC as u64); let nanos = (total_nanos % (NANOS_PER_SEC as u64)) as u32; if let Some(s) = self.secs.checked_mul(rhs as u64) { if let Some(secs) = s.checked_add(extra_secs) { debug_assert!(nanos < NANOS_PER_SEC); return Some(Duration { secs, nanos }); } } None } /// Saturating `Duration` multiplication. Computes `self * other`, returning /// [`Duration::MAX`] if overflow occurred. /// /// # Examples /// /// ``` /// #![feature(duration_constants)] /// use std::time::Duration; /// /// assert_eq!(Duration::new(0, 500_000_001).saturating_mul(2), Duration::new(1, 2)); /// assert_eq!(Duration::new(u64::MAX - 1, 0).saturating_mul(2), Duration::MAX); /// ``` #[stable(feature = "duration_saturating_ops", since = "1.53.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn saturating_mul(self, rhs: u32) -> Duration { match self.checked_mul(rhs) { Some(res) => res, None => Duration::MAX, } } /// Checked `Duration` division. Computes `self / other`, returning [`None`] /// if `other == 0`. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::time::Duration; /// /// assert_eq!(Duration::new(2, 0).checked_div(2), Some(Duration::new(1, 0))); /// assert_eq!(Duration::new(1, 0).checked_div(2), Some(Duration::new(0, 500_000_000))); /// assert_eq!(Duration::new(2, 0).checked_div(0), None); /// ``` #[stable(feature = "duration_checked_ops", since = "1.16.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_stable(feature = "duration_consts_2", since = "1.58.0")] pub const fn checked_div(self, rhs: u32) -> Option { if rhs != 0 { let secs = self.secs / (rhs as u64); let carry = self.secs - secs * (rhs as u64); let extra_nanos = carry * (NANOS_PER_SEC as u64) / (rhs as u64); let nanos = self.nanos / rhs + (extra_nanos as u32); debug_assert!(nanos < NANOS_PER_SEC); Some(Duration { secs, nanos }) } else { None } } /// Returns the number of seconds contained by this `Duration` as `f64`. /// /// The returned value does include the fractional (nanosecond) part of the duration. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.as_secs_f64(), 2.7); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn as_secs_f64(&self) -> f64 { (self.secs as f64) + (self.nanos as f64) / (NANOS_PER_SEC as f64) } /// Returns the number of seconds contained by this `Duration` as `f32`. /// /// The returned value does include the fractional (nanosecond) part of the duration. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.as_secs_f32(), 2.7); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn as_secs_f32(&self) -> f32 { (self.secs as f32) + (self.nanos as f32) / (NANOS_PER_SEC as f32) } /// Creates a new `Duration` from the specified number of seconds represented /// as `f64`. /// /// # Panics /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let res = Duration::from_secs_f64(0.0); /// assert_eq!(res, Duration::new(0, 0)); /// let res = Duration::from_secs_f64(1e-20); /// assert_eq!(res, Duration::new(0, 0)); /// let res = Duration::from_secs_f64(4.2e-7); /// assert_eq!(res, Duration::new(0, 420)); /// let res = Duration::from_secs_f64(2.7); /// assert_eq!(res, Duration::new(2, 700_000_000)); /// let res = Duration::from_secs_f64(3e10); /// assert_eq!(res, Duration::new(30_000_000_000, 0)); /// // subnormal float /// let res = Duration::from_secs_f64(f64::from_bits(1)); /// assert_eq!(res, Duration::new(0, 0)); /// // conversion uses rounding /// let res = Duration::from_secs_f64(0.999e-9); /// assert_eq!(res, Duration::new(0, 1)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn from_secs_f64(secs: f64) -> Duration { match Duration::try_from_secs_f64(secs) { Ok(v) => v, Err(e) => panic!("{}", e.description()), } } /// Creates a new `Duration` from the specified number of seconds represented /// as `f32`. /// /// # Panics /// This constructor will panic if `secs` is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let res = Duration::from_secs_f32(0.0); /// assert_eq!(res, Duration::new(0, 0)); /// let res = Duration::from_secs_f32(1e-20); /// assert_eq!(res, Duration::new(0, 0)); /// let res = Duration::from_secs_f32(4.2e-7); /// assert_eq!(res, Duration::new(0, 420)); /// let res = Duration::from_secs_f32(2.7); /// assert_eq!(res, Duration::new(2, 700_000_048)); /// let res = Duration::from_secs_f32(3e10); /// assert_eq!(res, Duration::new(30_000_001_024, 0)); /// // subnormal float /// let res = Duration::from_secs_f32(f32::from_bits(1)); /// assert_eq!(res, Duration::new(0, 0)); /// // conversion uses rounding /// let res = Duration::from_secs_f32(0.999e-9); /// assert_eq!(res, Duration::new(0, 1)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn from_secs_f32(secs: f32) -> Duration { match Duration::try_from_secs_f32(secs) { Ok(v) => v, Err(e) => panic!("{}", e.description()), } } /// Multiplies `Duration` by `f64`. /// /// # Panics /// This method will panic if result is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.mul_f64(3.14), Duration::new(8, 478_000_000)); /// assert_eq!(dur.mul_f64(3.14e5), Duration::new(847_800, 0)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn mul_f64(self, rhs: f64) -> Duration { Duration::from_secs_f64(rhs * self.as_secs_f64()) } /// Multiplies `Duration` by `f32`. /// /// # Panics /// This method will panic if result is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.mul_f32(3.14), Duration::new(8, 478_000_641)); /// assert_eq!(dur.mul_f32(3.14e5), Duration::new(847800, 0)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn mul_f32(self, rhs: f32) -> Duration { Duration::from_secs_f32(rhs * self.as_secs_f32()) } /// Divide `Duration` by `f64`. /// /// # Panics /// This method will panic if result is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// assert_eq!(dur.div_f64(3.14), Duration::new(0, 859_872_611)); /// assert_eq!(dur.div_f64(3.14e5), Duration::new(0, 8_599)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn div_f64(self, rhs: f64) -> Duration { Duration::from_secs_f64(self.as_secs_f64() / rhs) } /// Divide `Duration` by `f32`. /// /// # Panics /// This method will panic if result is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// use std::time::Duration; /// /// let dur = Duration::new(2, 700_000_000); /// // note that due to rounding errors result is slightly /// // different from 0.859_872_611 /// assert_eq!(dur.div_f32(3.14), Duration::new(0, 859_872_580)); /// assert_eq!(dur.div_f32(3.14e5), Duration::new(0, 8_599)); /// ``` #[stable(feature = "duration_float", since = "1.38.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn div_f32(self, rhs: f32) -> Duration { Duration::from_secs_f32(self.as_secs_f32() / rhs) } /// Divide `Duration` by `Duration` and return `f64`. /// /// # Examples /// ``` /// #![feature(div_duration)] /// use std::time::Duration; /// /// let dur1 = Duration::new(2, 700_000_000); /// let dur2 = Duration::new(5, 400_000_000); /// assert_eq!(dur1.div_duration_f64(dur2), 0.5); /// ``` #[unstable(feature = "div_duration", issue = "63139")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn div_duration_f64(self, rhs: Duration) -> f64 { self.as_secs_f64() / rhs.as_secs_f64() } /// Divide `Duration` by `Duration` and return `f32`. /// /// # Examples /// ``` /// #![feature(div_duration)] /// use std::time::Duration; /// /// let dur1 = Duration::new(2, 700_000_000); /// let dur2 = Duration::new(5, 400_000_000); /// assert_eq!(dur1.div_duration_f32(dur2), 0.5); /// ``` #[unstable(feature = "div_duration", issue = "63139")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] #[rustc_const_unstable(feature = "duration_consts_float", issue = "72440")] pub const fn div_duration_f32(self, rhs: Duration) -> f32 { self.as_secs_f32() / rhs.as_secs_f32() } } #[stable(feature = "duration", since = "1.3.0")] impl Add for Duration { type Output = Duration; fn add(self, rhs: Duration) -> Duration { self.checked_add(rhs).expect("overflow when adding durations") } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl AddAssign for Duration { fn add_assign(&mut self, rhs: Duration) { *self = *self + rhs; } } #[stable(feature = "duration", since = "1.3.0")] impl Sub for Duration { type Output = Duration; fn sub(self, rhs: Duration) -> Duration { self.checked_sub(rhs).expect("overflow when subtracting durations") } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl SubAssign for Duration { fn sub_assign(&mut self, rhs: Duration) { *self = *self - rhs; } } #[stable(feature = "duration", since = "1.3.0")] impl Mul for Duration { type Output = Duration; fn mul(self, rhs: u32) -> Duration { self.checked_mul(rhs).expect("overflow when multiplying duration by scalar") } } #[stable(feature = "symmetric_u32_duration_mul", since = "1.31.0")] impl Mul for u32 { type Output = Duration; fn mul(self, rhs: Duration) -> Duration { rhs * self } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl MulAssign for Duration { fn mul_assign(&mut self, rhs: u32) { *self = *self * rhs; } } #[stable(feature = "duration", since = "1.3.0")] impl Div for Duration { type Output = Duration; fn div(self, rhs: u32) -> Duration { self.checked_div(rhs).expect("divide by zero error when dividing duration by scalar") } } #[stable(feature = "time_augmented_assignment", since = "1.9.0")] impl DivAssign for Duration { fn div_assign(&mut self, rhs: u32) { *self = *self / rhs; } } macro_rules! sum_durations { ($iter:expr) => {{ let mut total_secs: u64 = 0; let mut total_nanos: u64 = 0; for entry in $iter { total_secs = total_secs.checked_add(entry.secs).expect("overflow in iter::sum over durations"); total_nanos = match total_nanos.checked_add(entry.nanos as u64) { Some(n) => n, None => { total_secs = total_secs .checked_add(total_nanos / NANOS_PER_SEC as u64) .expect("overflow in iter::sum over durations"); (total_nanos % NANOS_PER_SEC as u64) + entry.nanos as u64 } }; } total_secs = total_secs .checked_add(total_nanos / NANOS_PER_SEC as u64) .expect("overflow in iter::sum over durations"); total_nanos = total_nanos % NANOS_PER_SEC as u64; Duration { secs: total_secs, nanos: total_nanos as u32 } }}; } #[stable(feature = "duration_sum", since = "1.16.0")] impl Sum for Duration { fn sum>(iter: I) -> Duration { sum_durations!(iter) } } #[stable(feature = "duration_sum", since = "1.16.0")] impl<'a> Sum<&'a Duration> for Duration { fn sum>(iter: I) -> Duration { sum_durations!(iter) } } #[stable(feature = "duration_debug_impl", since = "1.27.0")] impl fmt::Debug for Duration { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { /// Formats a floating point number in decimal notation. /// /// The number is given as the `integer_part` and a fractional part. /// The value of the fractional part is `fractional_part / divisor`. So /// `integer_part` = 3, `fractional_part` = 12 and `divisor` = 100 /// represents the number `3.012`. Trailing zeros are omitted. /// /// `divisor` must not be above 100_000_000. It also should be a power /// of 10, everything else doesn't make sense. `fractional_part` has /// to be less than `10 * divisor`! /// /// A prefix and postfix may be added. The whole thing is padded /// to the formatter's `width`, if specified. fn fmt_decimal( f: &mut fmt::Formatter<'_>, mut integer_part: u64, mut fractional_part: u32, mut divisor: u32, prefix: &str, postfix: &str, ) -> fmt::Result { // Encode the fractional part into a temporary buffer. The buffer // only need to hold 9 elements, because `fractional_part` has to // be smaller than 10^9. The buffer is prefilled with '0' digits // to simplify the code below. let mut buf = [b'0'; 9]; // The next digit is written at this position let mut pos = 0; // We keep writing digits into the buffer while there are non-zero // digits left and we haven't written enough digits yet. while fractional_part > 0 && pos < f.precision().unwrap_or(9) { // Write new digit into the buffer buf[pos] = b'0' + (fractional_part / divisor) as u8; fractional_part %= divisor; divisor /= 10; pos += 1; } // If a precision < 9 was specified, there may be some non-zero // digits left that weren't written into the buffer. In that case we // need to perform rounding to match the semantics of printing // normal floating point numbers. However, we only need to do work // when rounding up. This happens if the first digit of the // remaining ones is >= 5. if fractional_part > 0 && fractional_part >= divisor * 5 { // Round up the number contained in the buffer. We go through // the buffer backwards and keep track of the carry. let mut rev_pos = pos; let mut carry = true; while carry && rev_pos > 0 { rev_pos -= 1; // If the digit in the buffer is not '9', we just need to // increment it and can stop then (since we don't have a // carry anymore). Otherwise, we set it to '0' (overflow) // and continue. if buf[rev_pos] < b'9' { buf[rev_pos] += 1; carry = false; } else { buf[rev_pos] = b'0'; } } // If we still have the carry bit set, that means that we set // the whole buffer to '0's and need to increment the integer // part. if carry { integer_part += 1; } } // Determine the end of the buffer: if precision is set, we just // use as many digits from the buffer (capped to 9). If it isn't // set, we only use all digits up to the last non-zero one. let end = f.precision().map(|p| crate::cmp::min(p, 9)).unwrap_or(pos); // This closure emits the formatted duration without emitting any // padding (padding is calculated below). let emit_without_padding = |f: &mut fmt::Formatter<'_>| { write!(f, "{}{}", prefix, integer_part)?; // Write the decimal point and the fractional part (if any). if end > 0 { // SAFETY: We are only writing ASCII digits into the buffer and // it was initialized with '0's, so it contains valid UTF8. let s = unsafe { crate::str::from_utf8_unchecked(&buf[..end]) }; // If the user request a precision > 9, we pad '0's at the end. let w = f.precision().unwrap_or(pos); write!(f, ".{:0 { // No `width` specified. There's no need to calculate the // length of the output in this case, just emit it. emit_without_padding(f) } Some(requested_w) => { // A `width` was specified. Calculate the actual width of // the output in order to calculate the required padding. // It consists of 4 parts: // 1. The prefix: is either "+" or "", so we can just use len(). // 2. The postfix: can be "µs" so we have to count UTF8 characters. let mut actual_w = prefix.len() + postfix.chars().count(); // 3. The integer part: if let Some(log) = integer_part.checked_ilog10() { // integer_part is > 0, so has length log10(x)+1 actual_w += 1 + log as usize; } else { // integer_part is 0, so has length 1. actual_w += 1; } // 4. The fractional part (if any): if end > 0 { let frac_part_w = f.precision().unwrap_or(pos); actual_w += 1 + frac_part_w; } if requested_w <= actual_w { // Output is already longer than `width`, so don't pad. emit_without_padding(f) } else { // We need to add padding. Use the `Formatter::padding` helper function. let default_align = crate::fmt::rt::v1::Alignment::Left; let post_padding = f.padding(requested_w - actual_w, default_align)?; emit_without_padding(f)?; post_padding.write(f) } } } } // Print leading '+' sign if requested let prefix = if f.sign_plus() { "+" } else { "" }; if self.secs > 0 { fmt_decimal(f, self.secs, self.nanos, NANOS_PER_SEC / 10, prefix, "s") } else if self.nanos >= NANOS_PER_MILLI { fmt_decimal( f, (self.nanos / NANOS_PER_MILLI) as u64, self.nanos % NANOS_PER_MILLI, NANOS_PER_MILLI / 10, prefix, "ms", ) } else if self.nanos >= NANOS_PER_MICRO { fmt_decimal( f, (self.nanos / NANOS_PER_MICRO) as u64, self.nanos % NANOS_PER_MICRO, NANOS_PER_MICRO / 10, prefix, "µs", ) } else { fmt_decimal(f, self.nanos as u64, 0, 1, prefix, "ns") } } } /// An error which can be returned when converting a floating-point value of seconds /// into a [`Duration`]. /// /// This error is used as the error type for [`Duration::try_from_secs_f32`] and /// [`Duration::try_from_secs_f64`]. /// /// # Example /// /// ``` /// #![feature(duration_checked_float)] /// use std::time::Duration; /// /// if let Err(e) = Duration::try_from_secs_f32(-1.0) { /// println!("Failed conversion to Duration: {e}"); /// } /// ``` #[derive(Debug, Clone, PartialEq, Eq)] #[unstable(feature = "duration_checked_float", issue = "83400")] pub struct FromFloatSecsError { kind: FromFloatSecsErrorKind, } impl FromFloatSecsError { const fn description(&self) -> &'static str { match self.kind { FromFloatSecsErrorKind::Negative => { "can not convert float seconds to Duration: value is negative" } FromFloatSecsErrorKind::OverflowOrNan => { "can not convert float seconds to Duration: value is either too big or NaN" } } } } #[unstable(feature = "duration_checked_float", issue = "83400")] impl fmt::Display for FromFloatSecsError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.description().fmt(f) } } #[derive(Debug, Clone, PartialEq, Eq)] enum FromFloatSecsErrorKind { // Value is negative. Negative, // Value is either too big to be represented as `Duration` or `NaN`. OverflowOrNan, } macro_rules! try_from_secs { ( secs = $secs: expr, mantissa_bits = $mant_bits: literal, exponent_bits = $exp_bits: literal, offset = $offset: literal, bits_ty = $bits_ty:ty, double_ty = $double_ty:ty, ) => {{ const MIN_EXP: i16 = 1 - (1i16 << $exp_bits) / 2; const MANT_MASK: $bits_ty = (1 << $mant_bits) - 1; const EXP_MASK: $bits_ty = (1 << $exp_bits) - 1; if $secs.is_sign_negative() { return Err(FromFloatSecsError { kind: FromFloatSecsErrorKind::Negative }); } let bits = $secs.to_bits(); let mant = (bits & MANT_MASK) | (MANT_MASK + 1); let exp = ((bits >> $mant_bits) & EXP_MASK) as i16 + MIN_EXP; let (secs, nanos) = if exp < -31 { // the input represents less than 1ns and can not be rounded to it (0u64, 0u32) } else if exp < 0 { // the input is less than 1 second let t = <$double_ty>::from(mant) << ($offset + exp); let nanos_offset = $mant_bits + $offset; let nanos_tmp = u128::from(NANOS_PER_SEC) * u128::from(t); let nanos = (nanos_tmp >> nanos_offset) as u32; let rem_mask = (1 << nanos_offset) - 1; let rem_msb_mask = 1 << (nanos_offset - 1); let rem = nanos_tmp & rem_mask; let is_tie = rem == rem_msb_mask; let is_even = (nanos & 1) == 0; let rem_msb = nanos_tmp & rem_msb_mask == 0; let add_ns = !(rem_msb || (is_even && is_tie)); // f32 does not have enough precision to trigger the second branch // since it can not represent numbers between 0.999_999_940_395 and 1.0. let nanos = nanos + add_ns as u32; if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (0, nanos) } else { (1, 0) } } else if exp < $mant_bits { let secs = u64::from(mant >> ($mant_bits - exp)); let t = <$double_ty>::from((mant << exp) & MANT_MASK); let nanos_offset = $mant_bits; let nanos_tmp = <$double_ty>::from(NANOS_PER_SEC) * t; let nanos = (nanos_tmp >> nanos_offset) as u32; let rem_mask = (1 << nanos_offset) - 1; let rem_msb_mask = 1 << (nanos_offset - 1); let rem = nanos_tmp & rem_mask; let is_tie = rem == rem_msb_mask; let is_even = (nanos & 1) == 0; let rem_msb = nanos_tmp & rem_msb_mask == 0; let add_ns = !(rem_msb || (is_even && is_tie)); // f32 does not have enough precision to trigger the second branch. // For example, it can not represent numbers between 1.999_999_880... // and 2.0. Bigger values result in even smaller precision of the // fractional part. let nanos = nanos + add_ns as u32; if ($mant_bits == 23) || (nanos != NANOS_PER_SEC) { (secs, nanos) } else { (secs + 1, 0) } } else if exp < 64 { // the input has no fractional part let secs = u64::from(mant) << (exp - $mant_bits); (secs, 0) } else { return Err(FromFloatSecsError { kind: FromFloatSecsErrorKind::OverflowOrNan }); }; Ok(Duration { secs, nanos }) }}; } impl Duration { /// The checked version of [`from_secs_f32`]. /// /// [`from_secs_f32`]: Duration::from_secs_f32 /// /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// #![feature(duration_checked_float)] /// /// use std::time::Duration; /// /// let res = Duration::try_from_secs_f32(0.0); /// assert_eq!(res, Ok(Duration::new(0, 0))); /// let res = Duration::try_from_secs_f32(1e-20); /// assert_eq!(res, Ok(Duration::new(0, 0))); /// let res = Duration::try_from_secs_f32(4.2e-7); /// assert_eq!(res, Ok(Duration::new(0, 420))); /// let res = Duration::try_from_secs_f32(2.7); /// assert_eq!(res, Ok(Duration::new(2, 700_000_048))); /// let res = Duration::try_from_secs_f32(3e10); /// assert_eq!(res, Ok(Duration::new(30_000_001_024, 0))); /// // subnormal float: /// let res = Duration::try_from_secs_f32(f32::from_bits(1)); /// assert_eq!(res, Ok(Duration::new(0, 0))); /// /// let res = Duration::try_from_secs_f32(-5.0); /// assert!(res.is_err()); /// let res = Duration::try_from_secs_f32(f32::NAN); /// assert!(res.is_err()); /// let res = Duration::try_from_secs_f32(2e19); /// assert!(res.is_err()); /// /// // the conversion uses rounding with tie resolution to even /// let res = Duration::try_from_secs_f32(0.999e-9); /// assert_eq!(res, Ok(Duration::new(0, 1))); /// /// // this float represents exactly 976562.5e-9 /// let val = f32::from_bits(0x3A80_0000); /// let res = Duration::try_from_secs_f32(val); /// assert_eq!(res, Ok(Duration::new(0, 976_562))); /// /// // this float represents exactly 2929687.5e-9 /// let val = f32::from_bits(0x3B40_0000); /// let res = Duration::try_from_secs_f32(val); /// assert_eq!(res, Ok(Duration::new(0, 2_929_688))); /// /// // this float represents exactly 1.000_976_562_5 /// let val = f32::from_bits(0x3F802000); /// let res = Duration::try_from_secs_f32(val); /// assert_eq!(res, Ok(Duration::new(1, 976_562))); /// /// // this float represents exactly 1.002_929_687_5 /// let val = f32::from_bits(0x3F806000); /// let res = Duration::try_from_secs_f32(val); /// assert_eq!(res, Ok(Duration::new(1, 2_929_688))); /// ``` #[unstable(feature = "duration_checked_float", issue = "83400")] #[inline] pub const fn try_from_secs_f32(secs: f32) -> Result { try_from_secs!( secs = secs, mantissa_bits = 23, exponent_bits = 8, offset = 41, bits_ty = u32, double_ty = u64, ) } /// The checked version of [`from_secs_f64`]. /// /// [`from_secs_f64`]: Duration::from_secs_f64 /// /// This constructor will return an `Err` if `secs` is negative, overflows `Duration` or not finite. /// /// # Examples /// ``` /// #![feature(duration_checked_float)] /// /// use std::time::Duration; /// /// let res = Duration::try_from_secs_f64(0.0); /// assert_eq!(res, Ok(Duration::new(0, 0))); /// let res = Duration::try_from_secs_f64(1e-20); /// assert_eq!(res, Ok(Duration::new(0, 0))); /// let res = Duration::try_from_secs_f64(4.2e-7); /// assert_eq!(res, Ok(Duration::new(0, 420))); /// let res = Duration::try_from_secs_f64(2.7); /// assert_eq!(res, Ok(Duration::new(2, 700_000_000))); /// let res = Duration::try_from_secs_f64(3e10); /// assert_eq!(res, Ok(Duration::new(30_000_000_000, 0))); /// // subnormal float /// let res = Duration::try_from_secs_f64(f64::from_bits(1)); /// assert_eq!(res, Ok(Duration::new(0, 0))); /// /// let res = Duration::try_from_secs_f64(-5.0); /// assert!(res.is_err()); /// let res = Duration::try_from_secs_f64(f64::NAN); /// assert!(res.is_err()); /// let res = Duration::try_from_secs_f64(2e19); /// assert!(res.is_err()); /// /// // the conversion uses rounding with tie resolution to even /// let res = Duration::try_from_secs_f64(0.999e-9); /// assert_eq!(res, Ok(Duration::new(0, 1))); /// let res = Duration::try_from_secs_f64(0.999_999_999_499); /// assert_eq!(res, Ok(Duration::new(0, 999_999_999))); /// let res = Duration::try_from_secs_f64(0.999_999_999_501); /// assert_eq!(res, Ok(Duration::new(1, 0))); /// let res = Duration::try_from_secs_f64(42.999_999_999_499); /// assert_eq!(res, Ok(Duration::new(42, 999_999_999))); /// let res = Duration::try_from_secs_f64(42.999_999_999_501); /// assert_eq!(res, Ok(Duration::new(43, 0))); /// /// // this float represents exactly 976562.5e-9 /// let val = f64::from_bits(0x3F50_0000_0000_0000); /// let res = Duration::try_from_secs_f64(val); /// assert_eq!(res, Ok(Duration::new(0, 976_562))); /// /// // this float represents exactly 2929687.5e-9 /// let val = f64::from_bits(0x3F68_0000_0000_0000); /// let res = Duration::try_from_secs_f64(val); /// assert_eq!(res, Ok(Duration::new(0, 2_929_688))); /// /// // this float represents exactly 1.000_976_562_5 /// let val = f64::from_bits(0x3FF0_0400_0000_0000); /// let res = Duration::try_from_secs_f64(val); /// assert_eq!(res, Ok(Duration::new(1, 976_562))); /// /// // this float represents exactly 1.002_929_687_5 /// let val = f64::from_bits(0x3_FF00_C000_0000_000); /// let res = Duration::try_from_secs_f64(val); /// assert_eq!(res, Ok(Duration::new(1, 2_929_688))); /// ``` #[unstable(feature = "duration_checked_float", issue = "83400")] #[inline] pub const fn try_from_secs_f64(secs: f64) -> Result { try_from_secs!( secs = secs, mantissa_bits = 52, exponent_bits = 11, offset = 44, bits_ty = u64, double_ty = u128, ) } }