// See src/libstd/primitive_docs.rs for documentation. use crate::cmp::Ordering::*; use crate::cmp::*; // Recursive macro for implementing n-ary tuple functions and operations // // Also provides implementations for tuples with lesser arity. For example, tuple_impls!(A B C) // will implement everything for (A, B, C), (A, B) and (A,). macro_rules! tuple_impls { // Stopping criteria (1-ary tuple) ($T:ident) => { tuple_impls!(@impl $T); }; // Running criteria (n-ary tuple, with n >= 2) ($T:ident $( $U:ident )+) => { tuple_impls!($( $U )+); tuple_impls!(@impl $T $( $U )+); }; // "Private" internal implementation (@impl $( $T:ident )+) => { maybe_tuple_doc! { $($T)+ @ #[stable(feature = "rust1", since = "1.0.0")] impl<$($T:PartialEq),+> PartialEq for ($($T,)+) where last_type!($($T,)+): ?Sized { #[inline] fn eq(&self, other: &($($T,)+)) -> bool { $( ${ignore(T)} self.${index()} == other.${index()} )&&+ } #[inline] fn ne(&self, other: &($($T,)+)) -> bool { $( ${ignore(T)} self.${index()} != other.${index()} )||+ } } } maybe_tuple_doc! { $($T)+ @ #[stable(feature = "rust1", since = "1.0.0")] impl<$($T:Eq),+> Eq for ($($T,)+) where last_type!($($T,)+): ?Sized {} } maybe_tuple_doc! { $($T)+ @ #[stable(feature = "rust1", since = "1.0.0")] impl<$($T:PartialOrd + PartialEq),+> PartialOrd for ($($T,)+) where last_type!($($T,)+): ?Sized { #[inline] fn partial_cmp(&self, other: &($($T,)+)) -> Option { lexical_partial_cmp!($( ${ignore(T)} self.${index()}, other.${index()} ),+) } #[inline] fn lt(&self, other: &($($T,)+)) -> bool { lexical_ord!(lt, $( ${ignore(T)} self.${index()}, other.${index()} ),+) } #[inline] fn le(&self, other: &($($T,)+)) -> bool { lexical_ord!(le, $( ${ignore(T)} self.${index()}, other.${index()} ),+) } #[inline] fn ge(&self, other: &($($T,)+)) -> bool { lexical_ord!(ge, $( ${ignore(T)} self.${index()}, other.${index()} ),+) } #[inline] fn gt(&self, other: &($($T,)+)) -> bool { lexical_ord!(gt, $( ${ignore(T)} self.${index()}, other.${index()} ),+) } } } maybe_tuple_doc! { $($T)+ @ #[stable(feature = "rust1", since = "1.0.0")] impl<$($T:Ord),+> Ord for ($($T,)+) where last_type!($($T,)+): ?Sized { #[inline] fn cmp(&self, other: &($($T,)+)) -> Ordering { lexical_cmp!($( ${ignore(T)} self.${index()}, other.${index()} ),+) } } } maybe_tuple_doc! { $($T)+ @ #[stable(feature = "rust1", since = "1.0.0")] impl<$($T:Default),+> Default for ($($T,)+) { #[inline] fn default() -> ($($T,)+) { ($({ let x: $T = Default::default(); x},)+) } } } } } // If this is a unary tuple, it adds a doc comment. // Otherwise, it hides the docs entirely. macro_rules! maybe_tuple_doc { ($a:ident @ #[$meta:meta] $item:item) => { #[cfg_attr(not(bootstrap), doc(fake_variadic))] #[doc = "This trait is implemented for tuples up to twelve items long."] #[$meta] $item }; ($a:ident $($rest_a:ident)+ @ #[$meta:meta] $item:item) => { #[doc(hidden)] #[$meta] $item }; } // Constructs an expression that performs a lexical ordering using method $rel. // The values are interleaved, so the macro invocation for // `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, a1, b1, a2, b2, // a3, b3)` (and similarly for `lexical_cmp`) macro_rules! lexical_ord { ($rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => { if $a != $b { lexical_ord!($rel, $a, $b) } else { lexical_ord!($rel, $($rest_a, $rest_b),+) } }; ($rel: ident, $a:expr, $b:expr) => { ($a) . $rel (& $b) }; } macro_rules! lexical_partial_cmp { ($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => { match ($a).partial_cmp(&$b) { Some(Equal) => lexical_partial_cmp!($($rest_a, $rest_b),+), ordering => ordering } }; ($a:expr, $b:expr) => { ($a).partial_cmp(&$b) }; } macro_rules! lexical_cmp { ($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => { match ($a).cmp(&$b) { Equal => lexical_cmp!($($rest_a, $rest_b),+), ordering => ordering } }; ($a:expr, $b:expr) => { ($a).cmp(&$b) }; } macro_rules! last_type { ($a:ident,) => { $a }; ($a:ident, $($rest_a:ident,)+) => { last_type!($($rest_a,)+) }; } tuple_impls!(E D C B A Z Y X W V U T);