//! Unwinding for *emscripten* target. //! //! Whereas Rust's usual unwinding implementation for Unix platforms //! calls into the libunwind APIs directly, on Emscripten we instead //! call into the C++ unwinding APIs. This is just an expedience since //! Emscripten's runtime always implements those APIs and does not //! implement libunwind. use alloc::boxed::Box; use core::any::Any; use core::intrinsics; use core::mem; use core::ptr; use core::sync::atomic::{AtomicBool, Ordering}; use unwind as uw; // This matches the layout of std::type_info in C++ #[repr(C)] struct TypeInfo { vtable: *const usize, name: *const u8, } unsafe impl Sync for TypeInfo {} extern "C" { // The leading `\x01` byte here is actually a magical signal to LLVM to // *not* apply any other mangling like prefixing with a `_` character. // // This symbol is the vtable used by C++'s `std::type_info`. Objects of type // `std::type_info`, type descriptors, have a pointer to this table. Type // descriptors are referenced by the C++ EH structures defined above and // that we construct below. // // Note that the real size is larger than 3 usize, but we only need our // vtable to point to the third element. #[link_name = "\x01_ZTVN10__cxxabiv117__class_type_infoE"] static CLASS_TYPE_INFO_VTABLE: [usize; 3]; } // std::type_info for a rust_panic class #[lang = "eh_catch_typeinfo"] static EXCEPTION_TYPE_INFO: TypeInfo = TypeInfo { // Normally we would use .as_ptr().add(2) but this doesn't work in a const context. vtable: unsafe { &CLASS_TYPE_INFO_VTABLE[2] }, // This intentionally doesn't use the normal name mangling scheme because // we don't want C++ to be able to produce or catch Rust panics. name: b"rust_panic\0".as_ptr(), }; struct Exception { // This is necessary because C++ code can capture our exception with // std::exception_ptr and rethrow it multiple times, possibly even in // another thread. caught: AtomicBool, // This needs to be an Option because the object's lifetime follows C++ // semantics: when catch_unwind moves the Box out of the exception it must // still leave the exception object in a valid state because its destructor // is still going to be called by __cxa_end_catch. data: Option>, } pub unsafe fn cleanup(ptr: *mut u8) -> Box { // intrinsics::try actually gives us a pointer to this structure. #[repr(C)] struct CatchData { ptr: *mut u8, is_rust_panic: bool, } let catch_data = &*(ptr as *mut CatchData); let adjusted_ptr = __cxa_begin_catch(catch_data.ptr as *mut libc::c_void) as *mut Exception; let out = if catch_data.is_rust_panic { let was_caught = (*adjusted_ptr).caught.swap(true, Ordering::SeqCst); if was_caught { // Since cleanup() isn't allowed to panic, we just abort instead. intrinsics::abort(); } (*adjusted_ptr).data.take().unwrap() } else { super::__rust_foreign_exception(); }; __cxa_end_catch(); out } pub unsafe fn panic(data: Box) -> u32 { let sz = mem::size_of_val(&data); let exception = __cxa_allocate_exception(sz) as *mut Exception; if exception.is_null() { return uw::_URC_FATAL_PHASE1_ERROR as u32; } ptr::write(exception, Exception { caught: AtomicBool::new(false), data: Some(data) }); __cxa_throw(exception as *mut _, &EXCEPTION_TYPE_INFO, exception_cleanup); } extern "C" fn exception_cleanup(ptr: *mut libc::c_void) -> *mut libc::c_void { unsafe { if let Some(b) = (ptr as *mut Exception).read().data { drop(b); super::__rust_drop_panic(); } ptr } } extern "C" { fn __cxa_allocate_exception(thrown_size: libc::size_t) -> *mut libc::c_void; fn __cxa_begin_catch(thrown_exception: *mut libc::c_void) -> *mut libc::c_void; fn __cxa_end_catch(); fn __cxa_throw( thrown_exception: *mut libc::c_void, tinfo: *const TypeInfo, dest: extern "C" fn(*mut libc::c_void) -> *mut libc::c_void, ) -> !; }