#[cfg(test)] mod tests; use self::Entry::*; use hashbrown::hash_map as base; use crate::borrow::Borrow; use crate::cell::Cell; use crate::collections::TryReserveError; use crate::collections::TryReserveErrorKind; use crate::error::Error; use crate::fmt::{self, Debug}; #[allow(deprecated)] use crate::hash::{BuildHasher, Hash, Hasher, SipHasher13}; use crate::iter::FusedIterator; use crate::ops::Index; use crate::sys; /// A [hash map] implemented with quadratic probing and SIMD lookup. /// /// By default, `HashMap` uses a hashing algorithm selected to provide /// resistance against HashDoS attacks. The algorithm is randomly seeded, and a /// reasonable best-effort is made to generate this seed from a high quality, /// secure source of randomness provided by the host without blocking the /// program. Because of this, the randomness of the seed depends on the output /// quality of the system's random number generator when the seed is created. /// In particular, seeds generated when the system's entropy pool is abnormally /// low such as during system boot may be of a lower quality. /// /// The default hashing algorithm is currently SipHash 1-3, though this is /// subject to change at any point in the future. While its performance is very /// competitive for medium sized keys, other hashing algorithms will outperform /// it for small keys such as integers as well as large keys such as long /// strings, though those algorithms will typically *not* protect against /// attacks such as HashDoS. /// /// The hashing algorithm can be replaced on a per-`HashMap` basis using the /// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. /// There are many alternative [hashing algorithms available on crates.io]. /// /// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although /// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`. /// If you implement these yourself, it is important that the following /// property holds: /// /// ```text /// k1 == k2 -> hash(k1) == hash(k2) /// ``` /// /// In other words, if two keys are equal, their hashes must be equal. /// /// It is a logic error for a key to be modified in such a way that the key's /// hash, as determined by the [`Hash`] trait, or its equality, as determined by /// the [`Eq`] trait, changes while it is in the map. This is normally only /// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. /// The behavior resulting from such a logic error is not specified, but will /// be encapsulated to the `HashMap` that observed the logic error and not /// result in undefined behavior. This could include panics, incorrect results, /// aborts, memory leaks, and non-termination. /// /// The hash table implementation is a Rust port of Google's [SwissTable]. /// The original C++ version of SwissTable can be found [here], and this /// [CppCon talk] gives an overview of how the algorithm works. /// /// [hash map]: crate::collections#use-a-hashmap-when /// [hashing algorithms available on crates.io]: https://crates.io/keywords/hasher /// [SwissTable]: https://abseil.io/blog/20180927-swisstables /// [here]: https://github.com/abseil/abseil-cpp/blob/master/absl/container/internal/raw_hash_set.h /// [CppCon talk]: https://www.youtube.com/watch?v=ncHmEUmJZf4 /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// // Type inference lets us omit an explicit type signature (which /// // would be `HashMap` in this example). /// let mut book_reviews = HashMap::new(); /// /// // Review some books. /// book_reviews.insert( /// "Adventures of Huckleberry Finn".to_string(), /// "My favorite book.".to_string(), /// ); /// book_reviews.insert( /// "Grimms' Fairy Tales".to_string(), /// "Masterpiece.".to_string(), /// ); /// book_reviews.insert( /// "Pride and Prejudice".to_string(), /// "Very enjoyable.".to_string(), /// ); /// book_reviews.insert( /// "The Adventures of Sherlock Holmes".to_string(), /// "Eye lyked it alot.".to_string(), /// ); /// /// // Check for a specific one. /// // When collections store owned values (String), they can still be /// // queried using references (&str). /// if !book_reviews.contains_key("Les Misérables") { /// println!("We've got {} reviews, but Les Misérables ain't one.", /// book_reviews.len()); /// } /// /// // oops, this review has a lot of spelling mistakes, let's delete it. /// book_reviews.remove("The Adventures of Sherlock Holmes"); /// /// // Look up the values associated with some keys. /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; /// for &book in &to_find { /// match book_reviews.get(book) { /// Some(review) => println!("{book}: {review}"), /// None => println!("{book} is unreviewed.") /// } /// } /// /// // Look up the value for a key (will panic if the key is not found). /// println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]); /// /// // Iterate over everything. /// for (book, review) in &book_reviews { /// println!("{book}: \"{review}\""); /// } /// ``` /// /// A `HashMap` with a known list of items can be initialized from an array: /// /// ``` /// use std::collections::HashMap; /// /// let solar_distance = HashMap::from([ /// ("Mercury", 0.4), /// ("Venus", 0.7), /// ("Earth", 1.0), /// ("Mars", 1.5), /// ]); /// ``` /// /// `HashMap` implements an [`Entry` API](#method.entry), which allows /// for complex methods of getting, setting, updating and removing keys and /// their values: /// /// ``` /// use std::collections::HashMap; /// /// // type inference lets us omit an explicit type signature (which /// // would be `HashMap<&str, u8>` in this example). /// let mut player_stats = HashMap::new(); /// /// fn random_stat_buff() -> u8 { /// // could actually return some random value here - let's just return /// // some fixed value for now /// 42 /// } /// /// // insert a key only if it doesn't already exist /// player_stats.entry("health").or_insert(100); /// /// // insert a key using a function that provides a new value only if it /// // doesn't already exist /// player_stats.entry("defence").or_insert_with(random_stat_buff); /// /// // update a key, guarding against the key possibly not being set /// let stat = player_stats.entry("attack").or_insert(100); /// *stat += random_stat_buff(); /// /// // modify an entry before an insert with in-place mutation /// player_stats.entry("mana").and_modify(|mana| *mana += 200).or_insert(100); /// ``` /// /// The easiest way to use `HashMap` with a custom key type is to derive [`Eq`] and [`Hash`]. /// We must also derive [`PartialEq`]. /// /// [`RefCell`]: crate::cell::RefCell /// [`Cell`]: crate::cell::Cell /// [`default`]: Default::default /// [`with_hasher`]: Self::with_hasher /// [`with_capacity_and_hasher`]: Self::with_capacity_and_hasher /// /// ``` /// use std::collections::HashMap; /// /// #[derive(Hash, Eq, PartialEq, Debug)] /// struct Viking { /// name: String, /// country: String, /// } /// /// impl Viking { /// /// Creates a new Viking. /// fn new(name: &str, country: &str) -> Viking { /// Viking { name: name.to_string(), country: country.to_string() } /// } /// } /// /// // Use a HashMap to store the vikings' health points. /// let vikings = HashMap::from([ /// (Viking::new("Einar", "Norway"), 25), /// (Viking::new("Olaf", "Denmark"), 24), /// (Viking::new("Harald", "Iceland"), 12), /// ]); /// /// // Use derived implementation to print the status of the vikings. /// for (viking, health) in &vikings { /// println!("{viking:?} has {health} hp"); /// } /// ``` #[cfg_attr(not(test), rustc_diagnostic_item = "HashMap")] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_insignificant_dtor] pub struct HashMap { base: base::HashMap, } impl HashMap { /// Creates an empty `HashMap`. /// /// The hash map is initially created with a capacity of 0, so it will not allocate until it /// is first inserted into. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, i32> = HashMap::new(); /// ``` #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] pub fn new() -> HashMap { Default::default() } /// Creates an empty `HashMap` with at least the specified capacity. /// /// The hash map will be able to hold at least `capacity` elements without /// reallocating. This method is allowed to allocate for more elements than /// `capacity`. If `capacity` is 0, the hash map will not allocate. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, i32> = HashMap::with_capacity(10); /// ``` #[inline] #[must_use] #[stable(feature = "rust1", since = "1.0.0")] pub fn with_capacity(capacity: usize) -> HashMap { HashMap::with_capacity_and_hasher(capacity, Default::default()) } } impl HashMap { /// Creates an empty `HashMap` which will use the given hash builder to hash /// keys. /// /// The created map has the default initial capacity. /// /// Warning: `hash_builder` is normally randomly generated, and /// is designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// The `hash_builder` passed should implement the [`BuildHasher`] trait for /// the HashMap to be useful, see its documentation for details. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_hasher(s); /// map.insert(1, 2); /// ``` #[inline] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] #[rustc_const_unstable(feature = "const_collections_with_hasher", issue = "102575")] pub const fn with_hasher(hash_builder: S) -> HashMap { HashMap { base: base::HashMap::with_hasher(hash_builder) } } /// Creates an empty `HashMap` with at least the specified capacity, using /// `hasher` to hash the keys. /// /// The hash map will be able to hold at least `capacity` elements without /// reallocating. This method is allowed to allocate for more elements than /// `capacity`. If `capacity` is 0, the hash map will not allocate. /// /// Warning: `hasher` is normally randomly generated, and /// is designed to allow HashMaps to be resistant to attacks that /// cause many collisions and very poor performance. Setting it /// manually using this function can expose a DoS attack vector. /// /// The `hasher` passed should implement the [`BuildHasher`] trait for /// the HashMap to be useful, see its documentation for details. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_capacity_and_hasher(10, s); /// map.insert(1, 2); /// ``` #[inline] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub fn with_capacity_and_hasher(capacity: usize, hasher: S) -> HashMap { HashMap { base: base::HashMap::with_capacity_and_hasher(capacity, hasher) } } /// Returns the number of elements the map can hold without reallocating. /// /// This number is a lower bound; the `HashMap` might be able to hold /// more, but is guaranteed to be able to hold at least this many. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let map: HashMap = HashMap::with_capacity(100); /// assert!(map.capacity() >= 100); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.base.capacity() } /// An iterator visiting all keys in arbitrary order. /// The iterator element type is `&'a K`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// for key in map.keys() { /// println!("{key}"); /// } /// ``` /// /// # Performance /// /// In the current implementation, iterating over keys takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[stable(feature = "rust1", since = "1.0.0")] pub fn keys(&self) -> Keys<'_, K, V> { Keys { inner: self.iter() } } /// Creates a consuming iterator visiting all the keys in arbitrary order. /// The map cannot be used after calling this. /// The iterator element type is `K`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// let mut vec: Vec<&str> = map.into_keys().collect(); /// // The `IntoKeys` iterator produces keys in arbitrary order, so the /// // keys must be sorted to test them against a sorted array. /// vec.sort_unstable(); /// assert_eq!(vec, ["a", "b", "c"]); /// ``` /// /// # Performance /// /// In the current implementation, iterating over keys takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[inline] #[rustc_lint_query_instability] #[stable(feature = "map_into_keys_values", since = "1.54.0")] pub fn into_keys(self) -> IntoKeys { IntoKeys { inner: self.into_iter() } } /// An iterator visiting all values in arbitrary order. /// The iterator element type is `&'a V`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// for val in map.values() { /// println!("{val}"); /// } /// ``` /// /// # Performance /// /// In the current implementation, iterating over values takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[stable(feature = "rust1", since = "1.0.0")] pub fn values(&self) -> Values<'_, K, V> { Values { inner: self.iter() } } /// An iterator visiting all values mutably in arbitrary order. /// The iterator element type is `&'a mut V`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// for val in map.values_mut() { /// *val = *val + 10; /// } /// /// for val in map.values() { /// println!("{val}"); /// } /// ``` /// /// # Performance /// /// In the current implementation, iterating over values takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[stable(feature = "map_values_mut", since = "1.10.0")] pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { ValuesMut { inner: self.iter_mut() } } /// Creates a consuming iterator visiting all the values in arbitrary order. /// The map cannot be used after calling this. /// The iterator element type is `V`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// let mut vec: Vec = map.into_values().collect(); /// // The `IntoValues` iterator produces values in arbitrary order, so /// // the values must be sorted to test them against a sorted array. /// vec.sort_unstable(); /// assert_eq!(vec, [1, 2, 3]); /// ``` /// /// # Performance /// /// In the current implementation, iterating over values takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[inline] #[rustc_lint_query_instability] #[stable(feature = "map_into_keys_values", since = "1.54.0")] pub fn into_values(self) -> IntoValues { IntoValues { inner: self.into_iter() } } /// An iterator visiting all key-value pairs in arbitrary order. /// The iterator element type is `(&'a K, &'a V)`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// for (key, val) in map.iter() { /// println!("key: {key} val: {val}"); /// } /// ``` /// /// # Performance /// /// In the current implementation, iterating over map takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[rustc_lint_query_instability] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.iter() } } /// An iterator visiting all key-value pairs in arbitrary order, /// with mutable references to the values. /// The iterator element type is `(&'a K, &'a mut V)`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// // Update all values /// for (_, val) in map.iter_mut() { /// *val *= 2; /// } /// /// for (key, val) in &map { /// println!("key: {key} val: {val}"); /// } /// ``` /// /// # Performance /// /// In the current implementation, iterating over map takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[rustc_lint_query_instability] #[stable(feature = "rust1", since = "1.0.0")] pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { IterMut { base: self.base.iter_mut() } } /// Returns the number of elements in the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert_eq!(a.len(), 0); /// a.insert(1, "a"); /// assert_eq!(a.len(), 1); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.base.len() } /// Returns `true` if the map contains no elements. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// assert!(a.is_empty()); /// a.insert(1, "a"); /// assert!(!a.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.base.is_empty() } /// Clears the map, returning all key-value pairs as an iterator. Keeps the /// allocated memory for reuse. /// /// If the returned iterator is dropped before being fully consumed, it /// drops the remaining key-value pairs. The returned iterator keeps a /// mutable borrow on the map to optimize its implementation. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// a.insert(1, "a"); /// a.insert(2, "b"); /// /// for (k, v) in a.drain().take(1) { /// assert!(k == 1 || k == 2); /// assert!(v == "a" || v == "b"); /// } /// /// assert!(a.is_empty()); /// ``` #[inline] #[rustc_lint_query_instability] #[stable(feature = "drain", since = "1.6.0")] pub fn drain(&mut self) -> Drain<'_, K, V> { Drain { base: self.base.drain() } } /// Creates an iterator which uses a closure to determine if an element should be removed. /// /// If the closure returns true, the element is removed from the map and yielded. /// If the closure returns false, or panics, the element remains in the map and will not be /// yielded. /// /// Note that `drain_filter` lets you mutate every value in the filter closure, regardless of /// whether you choose to keep or remove it. /// /// If the iterator is only partially consumed or not consumed at all, each of the remaining /// elements will still be subjected to the closure and removed and dropped if it returns true. /// /// It is unspecified how many more elements will be subjected to the closure /// if a panic occurs in the closure, or a panic occurs while dropping an element, /// or if the `DrainFilter` value is leaked. /// /// # Examples /// /// Splitting a map into even and odd keys, reusing the original map: /// /// ``` /// #![feature(hash_drain_filter)] /// use std::collections::HashMap; /// /// let mut map: HashMap = (0..8).map(|x| (x, x)).collect(); /// let drained: HashMap = map.drain_filter(|k, _v| k % 2 == 0).collect(); /// /// let mut evens = drained.keys().copied().collect::>(); /// let mut odds = map.keys().copied().collect::>(); /// evens.sort(); /// odds.sort(); /// /// assert_eq!(evens, vec![0, 2, 4, 6]); /// assert_eq!(odds, vec![1, 3, 5, 7]); /// ``` #[inline] #[rustc_lint_query_instability] #[unstable(feature = "hash_drain_filter", issue = "59618")] pub fn drain_filter(&mut self, pred: F) -> DrainFilter<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool, { DrainFilter { base: self.base.drain_filter(pred) } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all pairs `(k, v)` for which `f(&k, &mut v)` returns `false`. /// The elements are visited in unsorted (and unspecified) order. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = (0..8).map(|x| (x, x*10)).collect(); /// map.retain(|&k, _| k % 2 == 0); /// assert_eq!(map.len(), 4); /// ``` /// /// # Performance /// /// In the current implementation, this operation takes O(capacity) time /// instead of O(len) because it internally visits empty buckets too. #[inline] #[rustc_lint_query_instability] #[stable(feature = "retain_hash_collection", since = "1.18.0")] pub fn retain(&mut self, f: F) where F: FnMut(&K, &mut V) -> bool, { self.base.retain(f) } /// Clears the map, removing all key-value pairs. Keeps the allocated memory /// for reuse. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut a = HashMap::new(); /// a.insert(1, "a"); /// a.clear(); /// assert!(a.is_empty()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { self.base.clear(); } /// Returns a reference to the map's [`BuildHasher`]. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let hasher = RandomState::new(); /// let map: HashMap = HashMap::with_hasher(hasher); /// let hasher: &RandomState = map.hasher(); /// ``` #[inline] #[stable(feature = "hashmap_public_hasher", since = "1.9.0")] pub fn hasher(&self) -> &S { self.base.hasher() } } impl HashMap where K: Eq + Hash, S: BuildHasher, { /// Reserves capacity for at least `additional` more elements to be inserted /// in the `HashMap`. The collection may reserve more space to speculatively /// avoid frequent reallocations. After calling `reserve`, /// capacity will be greater than or equal to `self.len() + additional`. /// Does nothing if capacity is already sufficient. /// /// # Panics /// /// Panics if the new allocation size overflows [`usize`]. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// let mut map: HashMap<&str, i32> = HashMap::new(); /// map.reserve(10); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { self.base.reserve(additional) } /// Tries to reserve capacity for at least `additional` more elements to be inserted /// in the `HashMap`. The collection may reserve more space to speculatively /// avoid frequent reallocations. After calling `try_reserve`, /// capacity will be greater than or equal to `self.len() + additional` if /// it returns `Ok(())`. /// Does nothing if capacity is already sufficient. /// /// # Errors /// /// If the capacity overflows, or the allocator reports a failure, then an error /// is returned. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, isize> = HashMap::new(); /// map.try_reserve(10).expect("why is the test harness OOMing on a handful of bytes?"); /// ``` #[inline] #[stable(feature = "try_reserve", since = "1.57.0")] pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.base.try_reserve(additional).map_err(map_try_reserve_error) } /// Shrinks the capacity of the map as much as possible. It will drop /// down as much as possible while maintaining the internal rules /// and possibly leaving some space in accordance with the resize policy. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::with_capacity(100); /// map.insert(1, 2); /// map.insert(3, 4); /// assert!(map.capacity() >= 100); /// map.shrink_to_fit(); /// assert!(map.capacity() >= 2); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { self.base.shrink_to_fit(); } /// Shrinks the capacity of the map with a lower limit. It will drop /// down no lower than the supplied limit while maintaining the internal rules /// and possibly leaving some space in accordance with the resize policy. /// /// If the current capacity is less than the lower limit, this is a no-op. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap = HashMap::with_capacity(100); /// map.insert(1, 2); /// map.insert(3, 4); /// assert!(map.capacity() >= 100); /// map.shrink_to(10); /// assert!(map.capacity() >= 10); /// map.shrink_to(0); /// assert!(map.capacity() >= 2); /// ``` #[inline] #[stable(feature = "shrink_to", since = "1.56.0")] pub fn shrink_to(&mut self, min_capacity: usize) { self.base.shrink_to(min_capacity); } /// Gets the given key's corresponding entry in the map for in-place manipulation. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut letters = HashMap::new(); /// /// for ch in "a short treatise on fungi".chars() { /// letters.entry(ch).and_modify(|counter| *counter += 1).or_insert(1); /// } /// /// assert_eq!(letters[&'s'], 2); /// assert_eq!(letters[&'t'], 3); /// assert_eq!(letters[&'u'], 1); /// assert_eq!(letters.get(&'y'), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { map_entry(self.base.rustc_entry(key)) } /// Returns a reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get(&1), Some(&"a")); /// assert_eq!(map.get(&2), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get(&self, k: &Q) -> Option<&V> where K: Borrow, Q: Hash + Eq, { self.base.get(k) } /// Returns the key-value pair corresponding to the supplied key. /// /// The supplied key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); /// assert_eq!(map.get_key_value(&2), None); /// ``` #[inline] #[stable(feature = "map_get_key_value", since = "1.40.0")] pub fn get_key_value(&self, k: &Q) -> Option<(&K, &V)> where K: Borrow, Q: Hash + Eq, { self.base.get_key_value(k) } /// Attempts to get mutable references to `N` values in the map at once. /// /// Returns an array of length `N` with the results of each query. For soundness, at most one /// mutable reference will be returned to any value. `None` will be returned if any of the /// keys are duplicates or missing. /// /// # Examples /// /// ``` /// #![feature(map_many_mut)] /// use std::collections::HashMap; /// /// let mut libraries = HashMap::new(); /// libraries.insert("Bodleian Library".to_string(), 1602); /// libraries.insert("Athenæum".to_string(), 1807); /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); /// libraries.insert("Library of Congress".to_string(), 1800); /// /// let got = libraries.get_many_mut([ /// "Athenæum", /// "Library of Congress", /// ]); /// assert_eq!( /// got, /// Some([ /// &mut 1807, /// &mut 1800, /// ]), /// ); /// /// // Missing keys result in None /// let got = libraries.get_many_mut([ /// "Athenæum", /// "New York Public Library", /// ]); /// assert_eq!(got, None); /// /// // Duplicate keys result in None /// let got = libraries.get_many_mut([ /// "Athenæum", /// "Athenæum", /// ]); /// assert_eq!(got, None); /// ``` #[inline] #[unstable(feature = "map_many_mut", issue = "97601")] pub fn get_many_mut(&mut self, ks: [&Q; N]) -> Option<[&'_ mut V; N]> where K: Borrow, Q: Hash + Eq, { self.base.get_many_mut(ks) } /// Attempts to get mutable references to `N` values in the map at once, without validating that /// the values are unique. /// /// Returns an array of length `N` with the results of each query. `None` will be returned if /// any of the keys are missing. /// /// For a safe alternative see [`get_many_mut`](Self::get_many_mut). /// /// # Safety /// /// Calling this method with overlapping keys is *[undefined behavior]* even if the resulting /// references are not used. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// /// # Examples /// /// ``` /// #![feature(map_many_mut)] /// use std::collections::HashMap; /// /// let mut libraries = HashMap::new(); /// libraries.insert("Bodleian Library".to_string(), 1602); /// libraries.insert("Athenæum".to_string(), 1807); /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); /// libraries.insert("Library of Congress".to_string(), 1800); /// /// let got = libraries.get_many_mut([ /// "Athenæum", /// "Library of Congress", /// ]); /// assert_eq!( /// got, /// Some([ /// &mut 1807, /// &mut 1800, /// ]), /// ); /// /// // Missing keys result in None /// let got = libraries.get_many_mut([ /// "Athenæum", /// "New York Public Library", /// ]); /// assert_eq!(got, None); /// ``` #[inline] #[unstable(feature = "map_many_mut", issue = "97601")] pub unsafe fn get_many_unchecked_mut( &mut self, ks: [&Q; N], ) -> Option<[&'_ mut V; N]> where K: Borrow, Q: Hash + Eq, { self.base.get_many_unchecked_mut(ks) } /// Returns `true` if the map contains a value for the specified key. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.contains_key(&1), true); /// assert_eq!(map.contains_key(&2), false); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn contains_key(&self, k: &Q) -> bool where K: Borrow, Q: Hash + Eq, { self.base.contains_key(k) } /// Returns a mutable reference to the value corresponding to the key. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// if let Some(x) = map.get_mut(&1) { /// *x = "b"; /// } /// assert_eq!(map[&1], "b"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self, k: &Q) -> Option<&mut V> where K: Borrow, Q: Hash + Eq, { self.base.get_mut(k) } /// Inserts a key-value pair into the map. /// /// If the map did not have this key present, [`None`] is returned. /// /// If the map did have this key present, the value is updated, and the old /// value is returned. The key is not updated, though; this matters for /// types that can be `==` without being identical. See the [module-level /// documentation] for more. /// /// [module-level documentation]: crate::collections#insert-and-complex-keys /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// assert_eq!(map.insert(37, "a"), None); /// assert_eq!(map.is_empty(), false); /// /// map.insert(37, "b"); /// assert_eq!(map.insert(37, "c"), Some("b")); /// assert_eq!(map[&37], "c"); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, k: K, v: V) -> Option { self.base.insert(k, v) } /// Tries to insert a key-value pair into the map, and returns /// a mutable reference to the value in the entry. /// /// If the map already had this key present, nothing is updated, and /// an error containing the occupied entry and the value is returned. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(map_try_insert)] /// /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a"); /// /// let err = map.try_insert(37, "b").unwrap_err(); /// assert_eq!(err.entry.key(), &37); /// assert_eq!(err.entry.get(), &"a"); /// assert_eq!(err.value, "b"); /// ``` #[unstable(feature = "map_try_insert", issue = "82766")] pub fn try_insert(&mut self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V>> { match self.entry(key) { Occupied(entry) => Err(OccupiedError { entry, value }), Vacant(entry) => Ok(entry.insert(value)), } } /// Removes a key from the map, returning the value at the key if the key /// was previously in the map. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove(&1), Some("a")); /// assert_eq!(map.remove(&1), None); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(&mut self, k: &Q) -> Option where K: Borrow, Q: Hash + Eq, { self.base.remove(k) } /// Removes a key from the map, returning the stored key and value if the /// key was previously in the map. /// /// The key may be any borrowed form of the map's key type, but /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for /// the key type. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// # fn main() { /// let mut map = HashMap::new(); /// map.insert(1, "a"); /// assert_eq!(map.remove_entry(&1), Some((1, "a"))); /// assert_eq!(map.remove(&1), None); /// # } /// ``` #[inline] #[stable(feature = "hash_map_remove_entry", since = "1.27.0")] pub fn remove_entry(&mut self, k: &Q) -> Option<(K, V)> where K: Borrow, Q: Hash + Eq, { self.base.remove_entry(k) } } impl HashMap where S: BuildHasher, { /// Creates a raw entry builder for the HashMap. /// /// Raw entries provide the lowest level of control for searching and /// manipulating a map. They must be manually initialized with a hash and /// then manually searched. After this, insertions into a vacant entry /// still require an owned key to be provided. /// /// Raw entries are useful for such exotic situations as: /// /// * Hash memoization /// * Deferring the creation of an owned key until it is known to be required /// * Using a search key that doesn't work with the Borrow trait /// * Using custom comparison logic without newtype wrappers /// /// Because raw entries provide much more low-level control, it's much easier /// to put the HashMap into an inconsistent state which, while memory-safe, /// will cause the map to produce seemingly random results. Higher-level and /// more foolproof APIs like `entry` should be preferred when possible. /// /// In particular, the hash used to initialized the raw entry must still be /// consistent with the hash of the key that is ultimately stored in the entry. /// This is because implementations of HashMap may need to recompute hashes /// when resizing, at which point only the keys are available. /// /// Raw entries give mutable access to the keys. This must not be used /// to modify how the key would compare or hash, as the map will not re-evaluate /// where the key should go, meaning the keys may become "lost" if their /// location does not reflect their state. For instance, if you change a key /// so that the map now contains keys which compare equal, search may start /// acting erratically, with two keys randomly masking each other. Implementations /// are free to assume this doesn't happen (within the limits of memory-safety). #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S> { RawEntryBuilderMut { map: self } } /// Creates a raw immutable entry builder for the HashMap. /// /// Raw entries provide the lowest level of control for searching and /// manipulating a map. They must be manually initialized with a hash and /// then manually searched. /// /// This is useful for /// * Hash memoization /// * Using a search key that doesn't work with the Borrow trait /// * Using custom comparison logic without newtype wrappers /// /// Unless you are in such a situation, higher-level and more foolproof APIs like /// `get` should be preferred. /// /// Immutable raw entries have very limited use; you might instead want `raw_entry_mut`. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S> { RawEntryBuilder { map: self } } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for HashMap where K: Clone, V: Clone, S: Clone, { #[inline] fn clone(&self) -> Self { Self { base: self.base.clone() } } #[inline] fn clone_from(&mut self, other: &Self) { self.base.clone_from(&other.base); } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialEq for HashMap where K: Eq + Hash, V: PartialEq, S: BuildHasher, { fn eq(&self, other: &HashMap) -> bool { if self.len() != other.len() { return false; } self.iter().all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) } } #[stable(feature = "rust1", since = "1.0.0")] impl Eq for HashMap where K: Eq + Hash, V: Eq, S: BuildHasher, { } #[stable(feature = "rust1", since = "1.0.0")] impl Debug for HashMap where K: Debug, V: Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for HashMap where S: Default, { /// Creates an empty `HashMap`, with the `Default` value for the hasher. #[inline] fn default() -> HashMap { HashMap::with_hasher(Default::default()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Index<&Q> for HashMap where K: Eq + Hash + Borrow, Q: Eq + Hash, S: BuildHasher, { type Output = V; /// Returns a reference to the value corresponding to the supplied key. /// /// # Panics /// /// Panics if the key is not present in the `HashMap`. #[inline] fn index(&self, key: &Q) -> &V { self.get(key).expect("no entry found for key") } } #[stable(feature = "std_collections_from_array", since = "1.56.0")] // Note: as what is currently the most convenient built-in way to construct // a HashMap, a simple usage of this function must not *require* the user // to provide a type annotation in order to infer the third type parameter // (the hasher parameter, conventionally "S"). // To that end, this impl is defined using RandomState as the concrete // type of S, rather than being generic over `S: BuildHasher + Default`. // It is expected that users who want to specify a hasher will manually use // `with_capacity_and_hasher`. // If type parameter defaults worked on impls, and if type parameter // defaults could be mixed with const generics, then perhaps // this could be generalized. // See also the equivalent impl on HashSet. impl From<[(K, V); N]> for HashMap where K: Eq + Hash, { /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map1 = HashMap::from([(1, 2), (3, 4)]); /// let map2: HashMap<_, _> = [(1, 2), (3, 4)].into(); /// assert_eq!(map1, map2); /// ``` fn from(arr: [(K, V); N]) -> Self { Self::from_iter(arr) } } /// An iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`iter`] method on [`HashMap`]. See its /// documentation for more. /// /// [`iter`]: HashMap::iter /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ]); /// let iter = map.iter(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, K: 'a, V: 'a> { base: base::Iter<'a, K, V>, } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Iter<'_, K, V> { #[inline] fn clone(&self) -> Self { Iter { base: self.base.clone() } } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Iter<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A mutable iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its /// documentation for more. /// /// [`iter_mut`]: HashMap::iter_mut /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::from([ /// ("a", 1), /// ]); /// let iter = map.iter_mut(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct IterMut<'a, K: 'a, V: 'a> { base: base::IterMut<'a, K, V>, } impl<'a, K, V> IterMut<'a, K, V> { /// Returns an iterator of references over the remaining items. #[inline] pub(super) fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.rustc_iter() } } } /// An owning iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`into_iter`] method on [`HashMap`] /// (provided by the [`IntoIterator`] trait). See its documentation for more. /// /// [`into_iter`]: IntoIterator::into_iter /// [`IntoIterator`]: crate::iter::IntoIterator /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ]); /// let iter = map.into_iter(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct IntoIter { base: base::IntoIter, } impl IntoIter { /// Returns an iterator of references over the remaining items. #[inline] pub(super) fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.rustc_iter() } } } /// An iterator over the keys of a `HashMap`. /// /// This `struct` is created by the [`keys`] method on [`HashMap`]. See its /// documentation for more. /// /// [`keys`]: HashMap::keys /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ]); /// let iter_keys = map.keys(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct Keys<'a, K: 'a, V: 'a> { inner: Iter<'a, K, V>, } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Keys<'_, K, V> { #[inline] fn clone(&self) -> Self { Keys { inner: self.inner.clone() } } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Keys<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// An iterator over the values of a `HashMap`. /// /// This `struct` is created by the [`values`] method on [`HashMap`]. See its /// documentation for more. /// /// [`values`]: HashMap::values /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ]); /// let iter_values = map.values(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct Values<'a, K: 'a, V: 'a> { inner: Iter<'a, K, V>, } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Values<'_, K, V> { #[inline] fn clone(&self) -> Self { Values { inner: self.inner.clone() } } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Values<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.clone()).finish() } } /// A draining iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`drain`] method on [`HashMap`]. See its /// documentation for more. /// /// [`drain`]: HashMap::drain /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::from([ /// ("a", 1), /// ]); /// let iter = map.drain(); /// ``` #[stable(feature = "drain", since = "1.6.0")] pub struct Drain<'a, K: 'a, V: 'a> { base: base::Drain<'a, K, V>, } impl<'a, K, V> Drain<'a, K, V> { /// Returns an iterator of references over the remaining items. #[inline] pub(super) fn iter(&self) -> Iter<'_, K, V> { Iter { base: self.base.rustc_iter() } } } /// A draining, filtering iterator over the entries of a `HashMap`. /// /// This `struct` is created by the [`drain_filter`] method on [`HashMap`]. /// /// [`drain_filter`]: HashMap::drain_filter /// /// # Example /// /// ``` /// #![feature(hash_drain_filter)] /// /// use std::collections::HashMap; /// /// let mut map = HashMap::from([ /// ("a", 1), /// ]); /// let iter = map.drain_filter(|_k, v| *v % 2 == 0); /// ``` #[unstable(feature = "hash_drain_filter", issue = "59618")] pub struct DrainFilter<'a, K, V, F> where F: FnMut(&K, &mut V) -> bool, { base: base::DrainFilter<'a, K, V, F>, } /// A mutable iterator over the values of a `HashMap`. /// /// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its /// documentation for more. /// /// [`values_mut`]: HashMap::values_mut /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let mut map = HashMap::from([ /// ("a", 1), /// ]); /// let iter_values = map.values_mut(); /// ``` #[stable(feature = "map_values_mut", since = "1.10.0")] pub struct ValuesMut<'a, K: 'a, V: 'a> { inner: IterMut<'a, K, V>, } /// An owning iterator over the keys of a `HashMap`. /// /// This `struct` is created by the [`into_keys`] method on [`HashMap`]. /// See its documentation for more. /// /// [`into_keys`]: HashMap::into_keys /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ]); /// let iter_keys = map.into_keys(); /// ``` #[stable(feature = "map_into_keys_values", since = "1.54.0")] pub struct IntoKeys { inner: IntoIter, } /// An owning iterator over the values of a `HashMap`. /// /// This `struct` is created by the [`into_values`] method on [`HashMap`]. /// See its documentation for more. /// /// [`into_values`]: HashMap::into_values /// /// # Example /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ]); /// let iter_keys = map.into_values(); /// ``` #[stable(feature = "map_into_keys_values", since = "1.54.0")] pub struct IntoValues { inner: IntoIter, } /// A builder for computing where in a HashMap a key-value pair would be stored. /// /// See the [`HashMap::raw_entry_mut`] docs for usage examples. #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawEntryBuilderMut<'a, K: 'a, V: 'a, S: 'a> { map: &'a mut HashMap, } /// A view into a single entry in a map, which may either be vacant or occupied. /// /// This is a lower-level version of [`Entry`]. /// /// This `enum` is constructed through the [`raw_entry_mut`] method on [`HashMap`], /// then calling one of the methods of that [`RawEntryBuilderMut`]. /// /// [`raw_entry_mut`]: HashMap::raw_entry_mut #[unstable(feature = "hash_raw_entry", issue = "56167")] pub enum RawEntryMut<'a, K: 'a, V: 'a, S: 'a> { /// An occupied entry. Occupied(RawOccupiedEntryMut<'a, K, V, S>), /// A vacant entry. Vacant(RawVacantEntryMut<'a, K, V, S>), } /// A view into an occupied entry in a `HashMap`. /// It is part of the [`RawEntryMut`] enum. #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawOccupiedEntryMut<'a, K: 'a, V: 'a, S: 'a> { base: base::RawOccupiedEntryMut<'a, K, V, S>, } /// A view into a vacant entry in a `HashMap`. /// It is part of the [`RawEntryMut`] enum. #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawVacantEntryMut<'a, K: 'a, V: 'a, S: 'a> { base: base::RawVacantEntryMut<'a, K, V, S>, } /// A builder for computing where in a HashMap a key-value pair would be stored. /// /// See the [`HashMap::raw_entry`] docs for usage examples. #[unstable(feature = "hash_raw_entry", issue = "56167")] pub struct RawEntryBuilder<'a, K: 'a, V: 'a, S: 'a> { map: &'a HashMap, } impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S> where S: BuildHasher, { /// Creates a `RawEntryMut` from the given key. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key(self, k: &Q) -> RawEntryMut<'a, K, V, S> where K: Borrow, Q: Hash + Eq, { map_raw_entry(self.map.base.raw_entry_mut().from_key(k)) } /// Creates a `RawEntryMut` from the given key and its hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key_hashed_nocheck(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S> where K: Borrow, Q: Eq, { map_raw_entry(self.map.base.raw_entry_mut().from_key_hashed_nocheck(hash, k)) } /// Creates a `RawEntryMut` from the given hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_hash(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S> where for<'b> F: FnMut(&'b K) -> bool, { map_raw_entry(self.map.base.raw_entry_mut().from_hash(hash, is_match)) } } impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S> where S: BuildHasher, { /// Access an entry by key. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key(self, k: &Q) -> Option<(&'a K, &'a V)> where K: Borrow, Q: Hash + Eq, { self.map.base.raw_entry().from_key(k) } /// Access an entry by a key and its hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_key_hashed_nocheck(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)> where K: Borrow, Q: Hash + Eq, { self.map.base.raw_entry().from_key_hashed_nocheck(hash, k) } /// Access an entry by hash. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn from_hash(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> where F: FnMut(&K) -> bool, { self.map.base.raw_entry().from_hash(hash, is_match) } } impl<'a, K, V, S> RawEntryMut<'a, K, V, S> { /// Ensures a value is in the entry by inserting the default if empty, and returns /// mutable references to the key and value in the entry. /// /// # Examples /// /// ``` /// #![feature(hash_raw_entry)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 3); /// assert_eq!(map["poneyland"], 3); /// /// *map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 10).1 *= 2; /// assert_eq!(map["poneyland"], 6); /// ``` #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { match self { RawEntryMut::Occupied(entry) => entry.into_key_value(), RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val), } } /// Ensures a value is in the entry by inserting the result of the default function if empty, /// and returns mutable references to the key and value in the entry. /// /// # Examples /// /// ``` /// #![feature(hash_raw_entry)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, String> = HashMap::new(); /// /// map.raw_entry_mut().from_key("poneyland").or_insert_with(|| { /// ("poneyland", "hoho".to_string()) /// }); /// /// assert_eq!(map["poneyland"], "hoho".to_string()); /// ``` #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn or_insert_with(self, default: F) -> (&'a mut K, &'a mut V) where F: FnOnce() -> (K, V), K: Hash, S: BuildHasher, { match self { RawEntryMut::Occupied(entry) => entry.into_key_value(), RawEntryMut::Vacant(entry) => { let (k, v) = default(); entry.insert(k, v) } } } /// Provides in-place mutable access to an occupied entry before any /// potential inserts into the map. /// /// # Examples /// /// ``` /// #![feature(hash_raw_entry)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.raw_entry_mut() /// .from_key("poneyland") /// .and_modify(|_k, v| { *v += 1 }) /// .or_insert("poneyland", 42); /// assert_eq!(map["poneyland"], 42); /// /// map.raw_entry_mut() /// .from_key("poneyland") /// .and_modify(|_k, v| { *v += 1 }) /// .or_insert("poneyland", 0); /// assert_eq!(map["poneyland"], 43); /// ``` #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn and_modify(self, f: F) -> Self where F: FnOnce(&mut K, &mut V), { match self { RawEntryMut::Occupied(mut entry) => { { let (k, v) = entry.get_key_value_mut(); f(k, v); } RawEntryMut::Occupied(entry) } RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry), } } } impl<'a, K, V, S> RawOccupiedEntryMut<'a, K, V, S> { /// Gets a reference to the key in the entry. #[inline] #[must_use] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn key(&self) -> &K { self.base.key() } /// Gets a mutable reference to the key in the entry. #[inline] #[must_use] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn key_mut(&mut self) -> &mut K { self.base.key_mut() } /// Converts the entry into a mutable reference to the key in the entry /// with a lifetime bound to the map itself. #[inline] #[must_use = "`self` will be dropped if the result is not used"] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn into_key(self) -> &'a mut K { self.base.into_key() } /// Gets a reference to the value in the entry. #[inline] #[must_use] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get(&self) -> &V { self.base.get() } /// Converts the `OccupiedEntry` into a mutable reference to the value in the entry /// with a lifetime bound to the map itself. #[inline] #[must_use = "`self` will be dropped if the result is not used"] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn into_mut(self) -> &'a mut V { self.base.into_mut() } /// Gets a mutable reference to the value in the entry. #[inline] #[must_use] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get_mut(&mut self) -> &mut V { self.base.get_mut() } /// Gets a reference to the key and value in the entry. #[inline] #[must_use] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get_key_value(&mut self) -> (&K, &V) { self.base.get_key_value() } /// Gets a mutable reference to the key and value in the entry. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) { self.base.get_key_value_mut() } /// Converts the `OccupiedEntry` into a mutable reference to the key and value in the entry /// with a lifetime bound to the map itself. #[inline] #[must_use = "`self` will be dropped if the result is not used"] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn into_key_value(self) -> (&'a mut K, &'a mut V) { self.base.into_key_value() } /// Sets the value of the entry, and returns the entry's old value. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert(&mut self, value: V) -> V { self.base.insert(value) } /// Sets the value of the entry, and returns the entry's old value. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert_key(&mut self, key: K) -> K { self.base.insert_key(key) } /// Takes the value out of the entry, and returns it. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn remove(self) -> V { self.base.remove() } /// Take the ownership of the key and value from the map. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn remove_entry(self) -> (K, V) { self.base.remove_entry() } } impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> { /// Sets the value of the entry with the `VacantEntry`'s key, /// and returns a mutable reference to it. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { self.base.insert(key, value) } /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it. #[inline] #[unstable(feature = "hash_raw_entry", issue = "56167")] pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) where K: Hash, S: BuildHasher, { self.base.insert_hashed_nocheck(hash, key, value) } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawEntryBuilderMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawEntryBuilder").finish_non_exhaustive() } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { RawEntryMut::Vacant(ref v) => f.debug_tuple("RawEntry").field(v).finish(), RawEntryMut::Occupied(ref o) => f.debug_tuple("RawEntry").field(o).finish(), } } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawOccupiedEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawOccupiedEntryMut") .field("key", self.key()) .field("value", self.get()) .finish_non_exhaustive() } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawVacantEntryMut<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawVacantEntryMut").finish_non_exhaustive() } } #[unstable(feature = "hash_raw_entry", issue = "56167")] impl Debug for RawEntryBuilder<'_, K, V, S> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RawEntryBuilder").finish_non_exhaustive() } } /// A view into a single entry in a map, which may either be vacant or occupied. /// /// This `enum` is constructed from the [`entry`] method on [`HashMap`]. /// /// [`entry`]: HashMap::entry #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "HashMapEntry")] pub enum Entry<'a, K: 'a, V: 'a> { /// An occupied entry. #[stable(feature = "rust1", since = "1.0.0")] Occupied(#[stable(feature = "rust1", since = "1.0.0")] OccupiedEntry<'a, K, V>), /// A vacant entry. #[stable(feature = "rust1", since = "1.0.0")] Vacant(#[stable(feature = "rust1", since = "1.0.0")] VacantEntry<'a, K, V>), } #[stable(feature = "debug_hash_map", since = "1.12.0")] impl Debug for Entry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(), Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(), } } } /// A view into an occupied entry in a `HashMap`. /// It is part of the [`Entry`] enum. #[stable(feature = "rust1", since = "1.0.0")] pub struct OccupiedEntry<'a, K: 'a, V: 'a> { base: base::RustcOccupiedEntry<'a, K, V>, } #[stable(feature = "debug_hash_map", since = "1.12.0")] impl Debug for OccupiedEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OccupiedEntry") .field("key", self.key()) .field("value", self.get()) .finish_non_exhaustive() } } /// A view into a vacant entry in a `HashMap`. /// It is part of the [`Entry`] enum. #[stable(feature = "rust1", since = "1.0.0")] pub struct VacantEntry<'a, K: 'a, V: 'a> { base: base::RustcVacantEntry<'a, K, V>, } #[stable(feature = "debug_hash_map", since = "1.12.0")] impl Debug for VacantEntry<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("VacantEntry").field(self.key()).finish() } } /// The error returned by [`try_insert`](HashMap::try_insert) when the key already exists. /// /// Contains the occupied entry, and the value that was not inserted. #[unstable(feature = "map_try_insert", issue = "82766")] pub struct OccupiedError<'a, K: 'a, V: 'a> { /// The entry in the map that was already occupied. pub entry: OccupiedEntry<'a, K, V>, /// The value which was not inserted, because the entry was already occupied. pub value: V, } #[unstable(feature = "map_try_insert", issue = "82766")] impl Debug for OccupiedError<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("OccupiedError") .field("key", self.entry.key()) .field("old_value", self.entry.get()) .field("new_value", &self.value) .finish_non_exhaustive() } } #[unstable(feature = "map_try_insert", issue = "82766")] impl<'a, K: Debug, V: Debug> fmt::Display for OccupiedError<'a, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!( f, "failed to insert {:?}, key {:?} already exists with value {:?}", self.value, self.entry.key(), self.entry.get(), ) } } #[unstable(feature = "map_try_insert", issue = "82766")] impl<'a, K: fmt::Debug, V: fmt::Debug> Error for OccupiedError<'a, K, V> { #[allow(deprecated)] fn description(&self) -> &str { "key already exists" } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V, S> IntoIterator for &'a HashMap { type Item = (&'a K, &'a V); type IntoIter = Iter<'a, K, V>; #[inline] #[rustc_lint_query_instability] fn into_iter(self) -> Iter<'a, K, V> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V, S> IntoIterator for &'a mut HashMap { type Item = (&'a K, &'a mut V); type IntoIter = IterMut<'a, K, V>; #[inline] #[rustc_lint_query_instability] fn into_iter(self) -> IterMut<'a, K, V> { self.iter_mut() } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for HashMap { type Item = (K, V); type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each key-value /// pair out of the map in arbitrary order. The map cannot be used after /// calling this. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let map = HashMap::from([ /// ("a", 1), /// ("b", 2), /// ("c", 3), /// ]); /// /// // Not possible with .iter() /// let vec: Vec<(&str, i32)> = map.into_iter().collect(); /// ``` #[inline] #[rustc_lint_query_instability] fn into_iter(self) -> IntoIter { IntoIter { base: self.base.into_iter() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Iter<'a, K, V> { type Item = (&'a K, &'a V); #[inline] fn next(&mut self) -> Option<(&'a K, &'a V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Iter<'_, K, V> { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Iter<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for IterMut<'a, K, V> { type Item = (&'a K, &'a mut V); #[inline] fn next(&mut self) -> Option<(&'a K, &'a mut V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IterMut<'_, K, V> { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IterMut<'_, K, V> {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for IterMut<'_, K, V> where K: fmt::Debug, V: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IntoIter {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Keys<'a, K, V> { type Item = &'a K; #[inline] fn next(&mut self) -> Option<&'a K> { self.inner.next().map(|(k, _)| k) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Keys<'_, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Keys<'_, K, V> {} #[stable(feature = "rust1", since = "1.0.0")] impl<'a, K, V> Iterator for Values<'a, K, V> { type Item = &'a V; #[inline] fn next(&mut self) -> Option<&'a V> { self.inner.next().map(|(_, v)| v) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Values<'_, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Values<'_, K, V> {} #[stable(feature = "map_values_mut", since = "1.10.0")] impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { type Item = &'a mut V; #[inline] fn next(&mut self) -> Option<&'a mut V> { self.inner.next().map(|(_, v)| v) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "map_values_mut", since = "1.10.0")] impl ExactSizeIterator for ValuesMut<'_, K, V> { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for ValuesMut<'_, K, V> {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for ValuesMut<'_, K, V> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish() } } #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl Iterator for IntoKeys { type Item = K; #[inline] fn next(&mut self) -> Option { self.inner.next().map(|(k, _)| k) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl ExactSizeIterator for IntoKeys { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl FusedIterator for IntoKeys {} #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl fmt::Debug for IntoKeys { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.inner.iter().map(|(k, _)| k)).finish() } } #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl Iterator for IntoValues { type Item = V; #[inline] fn next(&mut self) -> Option { self.inner.next().map(|(_, v)| v) } #[inline] fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl ExactSizeIterator for IntoValues { #[inline] fn len(&self) -> usize { self.inner.len() } } #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl FusedIterator for IntoValues {} #[stable(feature = "map_into_keys_values", since = "1.54.0")] impl fmt::Debug for IntoValues { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.inner.iter().map(|(_, v)| v)).finish() } } #[stable(feature = "drain", since = "1.6.0")] impl<'a, K, V> Iterator for Drain<'a, K, V> { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[stable(feature = "drain", since = "1.6.0")] impl ExactSizeIterator for Drain<'_, K, V> { #[inline] fn len(&self) -> usize { self.base.len() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Drain<'_, K, V> {} #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for Drain<'_, K, V> where K: fmt::Debug, V: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } #[unstable(feature = "hash_drain_filter", issue = "59618")] impl Iterator for DrainFilter<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool, { type Item = (K, V); #[inline] fn next(&mut self) -> Option<(K, V)> { self.base.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.base.size_hint() } } #[unstable(feature = "hash_drain_filter", issue = "59618")] impl FusedIterator for DrainFilter<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool {} #[unstable(feature = "hash_drain_filter", issue = "59618")] impl<'a, K, V, F> fmt::Debug for DrainFilter<'a, K, V, F> where F: FnMut(&K, &mut V) -> bool, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("DrainFilter").finish_non_exhaustive() } } impl<'a, K, V> Entry<'a, K, V> { /// Ensures a value is in the entry by inserting the default if empty, and returns /// a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.entry("poneyland").or_insert(3); /// assert_eq!(map["poneyland"], 3); /// /// *map.entry("poneyland").or_insert(10) *= 2; /// assert_eq!(map["poneyland"], 6); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or_insert(self, default: V) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(default), } } /// Ensures a value is in the entry by inserting the result of the default function if empty, /// and returns a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, String> = HashMap::new(); /// let s = "hoho".to_string(); /// /// map.entry("poneyland").or_insert_with(|| s); /// /// assert_eq!(map["poneyland"], "hoho".to_string()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn or_insert_with V>(self, default: F) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(default()), } } /// Ensures a value is in the entry by inserting, if empty, the result of the default function. /// This method allows for generating key-derived values for insertion by providing the default /// function a reference to the key that was moved during the `.entry(key)` method call. /// /// The reference to the moved key is provided so that cloning or copying the key is /// unnecessary, unlike with `.or_insert_with(|| ... )`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, usize> = HashMap::new(); /// /// map.entry("poneyland").or_insert_with_key(|key| key.chars().count()); /// /// assert_eq!(map["poneyland"], 9); /// ``` #[inline] #[stable(feature = "or_insert_with_key", since = "1.50.0")] pub fn or_insert_with_key V>(self, default: F) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => { let value = default(entry.key()); entry.insert(value) } } } /// Returns a reference to this entry's key. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[inline] #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { match *self { Occupied(ref entry) => entry.key(), Vacant(ref entry) => entry.key(), } } /// Provides in-place mutable access to an occupied entry before any /// potential inserts into the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// map.entry("poneyland") /// .and_modify(|e| { *e += 1 }) /// .or_insert(42); /// assert_eq!(map["poneyland"], 42); /// /// map.entry("poneyland") /// .and_modify(|e| { *e += 1 }) /// .or_insert(42); /// assert_eq!(map["poneyland"], 43); /// ``` #[inline] #[stable(feature = "entry_and_modify", since = "1.26.0")] pub fn and_modify(self, f: F) -> Self where F: FnOnce(&mut V), { match self { Occupied(mut entry) => { f(entry.get_mut()); Occupied(entry) } Vacant(entry) => Vacant(entry), } } /// Sets the value of the entry, and returns an `OccupiedEntry`. /// /// # Examples /// /// ``` /// #![feature(entry_insert)] /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, String> = HashMap::new(); /// let entry = map.entry("poneyland").insert_entry("hoho".to_string()); /// /// assert_eq!(entry.key(), &"poneyland"); /// ``` #[inline] #[unstable(feature = "entry_insert", issue = "65225")] pub fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> { match self { Occupied(mut entry) => { entry.insert(value); entry } Vacant(entry) => entry.insert_entry(value), } } } impl<'a, K, V: Default> Entry<'a, K, V> { /// Ensures a value is in the entry by inserting the default value if empty, /// and returns a mutable reference to the value in the entry. /// /// # Examples /// /// ``` /// # fn main() { /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, Option> = HashMap::new(); /// map.entry("poneyland").or_default(); /// /// assert_eq!(map["poneyland"], None); /// # } /// ``` #[inline] #[stable(feature = "entry_or_default", since = "1.28.0")] pub fn or_default(self) -> &'a mut V { match self { Occupied(entry) => entry.into_mut(), Vacant(entry) => entry.insert(Default::default()), } } } impl<'a, K, V> OccupiedEntry<'a, K, V> { /// Gets a reference to the key in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[inline] #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { self.base.key() } /// Take the ownership of the key and value from the map. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// // We delete the entry from the map. /// o.remove_entry(); /// } /// /// assert_eq!(map.contains_key("poneyland"), false); /// ``` #[inline] #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] pub fn remove_entry(self) -> (K, V) { self.base.remove_entry() } /// Gets a reference to the value in the entry. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// assert_eq!(o.get(), &12); /// } /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn get(&self) -> &V { self.base.get() } /// Gets a mutable reference to the value in the entry. /// /// If you need a reference to the `OccupiedEntry` which may outlive the /// destruction of the `Entry` value, see [`into_mut`]. /// /// [`into_mut`]: Self::into_mut /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// if let Entry::Occupied(mut o) = map.entry("poneyland") { /// *o.get_mut() += 10; /// assert_eq!(*o.get(), 22); /// /// // We can use the same Entry multiple times. /// *o.get_mut() += 2; /// } /// /// assert_eq!(map["poneyland"], 24); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self) -> &mut V { self.base.get_mut() } /// Converts the `OccupiedEntry` into a mutable reference to the value in the entry /// with a lifetime bound to the map itself. /// /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. /// /// [`get_mut`]: Self::get_mut /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// assert_eq!(map["poneyland"], 12); /// if let Entry::Occupied(o) = map.entry("poneyland") { /// *o.into_mut() += 10; /// } /// /// assert_eq!(map["poneyland"], 22); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn into_mut(self) -> &'a mut V { self.base.into_mut() } /// Sets the value of the entry, and returns the entry's old value. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(mut o) = map.entry("poneyland") { /// assert_eq!(o.insert(15), 12); /// } /// /// assert_eq!(map["poneyland"], 15); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(&mut self, value: V) -> V { self.base.insert(value) } /// Takes the value out of the entry, and returns it. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// map.entry("poneyland").or_insert(12); /// /// if let Entry::Occupied(o) = map.entry("poneyland") { /// assert_eq!(o.remove(), 12); /// } /// /// assert_eq!(map.contains_key("poneyland"), false); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn remove(self) -> V { self.base.remove() } /// Replaces the entry, returning the old key and value. The new key in the hash map will be /// the key used to create this entry. /// /// # Examples /// /// ``` /// #![feature(map_entry_replace)] /// use std::collections::hash_map::{Entry, HashMap}; /// use std::rc::Rc; /// /// let mut map: HashMap, u32> = HashMap::new(); /// map.insert(Rc::new("Stringthing".to_string()), 15); /// /// let my_key = Rc::new("Stringthing".to_string()); /// /// if let Entry::Occupied(entry) = map.entry(my_key) { /// // Also replace the key with a handle to our other key. /// let (old_key, old_value): (Rc, u32) = entry.replace_entry(16); /// } /// /// ``` #[inline] #[unstable(feature = "map_entry_replace", issue = "44286")] pub fn replace_entry(self, value: V) -> (K, V) { self.base.replace_entry(value) } /// Replaces the key in the hash map with the key used to create this entry. /// /// # Examples /// /// ``` /// #![feature(map_entry_replace)] /// use std::collections::hash_map::{Entry, HashMap}; /// use std::rc::Rc; /// /// let mut map: HashMap, u32> = HashMap::new(); /// let known_strings: Vec> = Vec::new(); /// /// // Initialise known strings, run program, etc. /// /// reclaim_memory(&mut map, &known_strings); /// /// fn reclaim_memory(map: &mut HashMap, u32>, known_strings: &[Rc] ) { /// for s in known_strings { /// if let Entry::Occupied(entry) = map.entry(Rc::clone(s)) { /// // Replaces the entry's key with our version of it in `known_strings`. /// entry.replace_key(); /// } /// } /// } /// ``` #[inline] #[unstable(feature = "map_entry_replace", issue = "44286")] pub fn replace_key(self) -> K { self.base.replace_key() } } impl<'a, K: 'a, V: 'a> VacantEntry<'a, K, V> { /// Gets a reference to the key that would be used when inserting a value /// through the `VacantEntry`. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); /// ``` #[inline] #[stable(feature = "map_entry_keys", since = "1.10.0")] pub fn key(&self) -> &K { self.base.key() } /// Take ownership of the key. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// if let Entry::Vacant(v) = map.entry("poneyland") { /// v.into_key(); /// } /// ``` #[inline] #[stable(feature = "map_entry_recover_keys2", since = "1.12.0")] pub fn into_key(self) -> K { self.base.into_key() } /// Sets the value of the entry with the `VacantEntry`'s key, /// and returns a mutable reference to it. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// if let Entry::Vacant(o) = map.entry("poneyland") { /// o.insert(37); /// } /// assert_eq!(map["poneyland"], 37); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] pub fn insert(self, value: V) -> &'a mut V { self.base.insert(value) } /// Sets the value of the entry with the `VacantEntry`'s key, /// and returns an `OccupiedEntry`. /// /// # Examples /// /// ``` /// #![feature(entry_insert)] /// use std::collections::HashMap; /// use std::collections::hash_map::Entry; /// /// let mut map: HashMap<&str, u32> = HashMap::new(); /// /// if let Entry::Vacant(o) = map.entry("poneyland") { /// o.insert_entry(37); /// } /// assert_eq!(map["poneyland"], 37); /// ``` #[inline] #[unstable(feature = "entry_insert", issue = "65225")] pub fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> { let base = self.base.insert_entry(value); OccupiedEntry { base } } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator<(K, V)> for HashMap where K: Eq + Hash, S: BuildHasher + Default, { fn from_iter>(iter: T) -> HashMap { let mut map = HashMap::with_hasher(Default::default()); map.extend(iter); map } } /// Inserts all new key-values from the iterator and replaces values with existing /// keys with new values returned from the iterator. #[stable(feature = "rust1", since = "1.0.0")] impl Extend<(K, V)> for HashMap where K: Eq + Hash, S: BuildHasher, { #[inline] fn extend>(&mut self, iter: T) { self.base.extend(iter) } #[inline] fn extend_one(&mut self, (k, v): (K, V)) { self.base.insert(k, v); } #[inline] fn extend_reserve(&mut self, additional: usize) { self.base.extend_reserve(additional); } } #[stable(feature = "hash_extend_copy", since = "1.4.0")] impl<'a, K, V, S> Extend<(&'a K, &'a V)> for HashMap where K: Eq + Hash + Copy, V: Copy, S: BuildHasher, { #[inline] fn extend>(&mut self, iter: T) { self.base.extend(iter) } #[inline] fn extend_one(&mut self, (&k, &v): (&'a K, &'a V)) { self.base.insert(k, v); } #[inline] fn extend_reserve(&mut self, additional: usize) { Extend::<(K, V)>::extend_reserve(self, additional) } } /// `RandomState` is the default state for [`HashMap`] types. /// /// A particular instance `RandomState` will create the same instances of /// [`Hasher`], but the hashers created by two different `RandomState` /// instances are unlikely to produce the same result for the same values. /// /// # Examples /// /// ``` /// use std::collections::HashMap; /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// let mut map = HashMap::with_hasher(s); /// map.insert(1, 2); /// ``` #[derive(Clone)] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub struct RandomState { k0: u64, k1: u64, } impl RandomState { /// Constructs a new `RandomState` that is initialized with random keys. /// /// # Examples /// /// ``` /// use std::collections::hash_map::RandomState; /// /// let s = RandomState::new(); /// ``` #[inline] #[allow(deprecated)] // rand #[must_use] #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] pub fn new() -> RandomState { // Historically this function did not cache keys from the OS and instead // simply always called `rand::thread_rng().gen()` twice. In #31356 it // was discovered, however, that because we re-seed the thread-local RNG // from the OS periodically that this can cause excessive slowdown when // many hash maps are created on a thread. To solve this performance // trap we cache the first set of randomly generated keys per-thread. // // Later in #36481 it was discovered that exposing a deterministic // iteration order allows a form of DOS attack. To counter that we // increment one of the seeds on every RandomState creation, giving // every corresponding HashMap a different iteration order. thread_local!(static KEYS: Cell<(u64, u64)> = { Cell::new(sys::hashmap_random_keys()) }); KEYS.with(|keys| { let (k0, k1) = keys.get(); keys.set((k0.wrapping_add(1), k1)); RandomState { k0, k1 } }) } } #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] impl BuildHasher for RandomState { type Hasher = DefaultHasher; #[inline] #[allow(deprecated)] fn build_hasher(&self) -> DefaultHasher { DefaultHasher(SipHasher13::new_with_keys(self.k0, self.k1)) } } /// The default [`Hasher`] used by [`RandomState`]. /// /// The internal algorithm is not specified, and so it and its hashes should /// not be relied upon over releases. #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] #[allow(deprecated)] #[derive(Clone, Debug)] pub struct DefaultHasher(SipHasher13); impl DefaultHasher { /// Creates a new `DefaultHasher`. /// /// This hasher is not guaranteed to be the same as all other /// `DefaultHasher` instances, but is the same as all other `DefaultHasher` /// instances created through `new` or `default`. #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] #[inline] #[allow(deprecated)] #[rustc_const_unstable(feature = "const_hash", issue = "104061")] #[must_use] pub const fn new() -> DefaultHasher { DefaultHasher(SipHasher13::new_with_keys(0, 0)) } } #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] #[rustc_const_unstable(feature = "const_hash", issue = "104061")] impl const Default for DefaultHasher { /// Creates a new `DefaultHasher` using [`new`]. /// See its documentation for more. /// /// [`new`]: DefaultHasher::new #[inline] fn default() -> DefaultHasher { DefaultHasher::new() } } #[stable(feature = "hashmap_default_hasher", since = "1.13.0")] #[rustc_const_unstable(feature = "const_hash", issue = "104061")] impl const Hasher for DefaultHasher { // The underlying `SipHasher13` doesn't override the other // `write_*` methods, so it's ok not to forward them here. #[inline] fn write(&mut self, msg: &[u8]) { self.0.write(msg) } #[inline] fn write_str(&mut self, s: &str) { self.0.write_str(s); } #[inline] fn finish(&self) -> u64 { self.0.finish() } } #[stable(feature = "hashmap_build_hasher", since = "1.7.0")] impl Default for RandomState { /// Constructs a new `RandomState`. #[inline] fn default() -> RandomState { RandomState::new() } } #[stable(feature = "std_debug", since = "1.16.0")] impl fmt::Debug for RandomState { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("RandomState").finish_non_exhaustive() } } #[inline] fn map_entry<'a, K: 'a, V: 'a>(raw: base::RustcEntry<'a, K, V>) -> Entry<'a, K, V> { match raw { base::RustcEntry::Occupied(base) => Entry::Occupied(OccupiedEntry { base }), base::RustcEntry::Vacant(base) => Entry::Vacant(VacantEntry { base }), } } #[inline] pub(super) fn map_try_reserve_error(err: hashbrown::TryReserveError) -> TryReserveError { match err { hashbrown::TryReserveError::CapacityOverflow => { TryReserveErrorKind::CapacityOverflow.into() } hashbrown::TryReserveError::AllocError { layout } => { TryReserveErrorKind::AllocError { layout, non_exhaustive: () }.into() } } } #[inline] fn map_raw_entry<'a, K: 'a, V: 'a, S: 'a>( raw: base::RawEntryMut<'a, K, V, S>, ) -> RawEntryMut<'a, K, V, S> { match raw { base::RawEntryMut::Occupied(base) => RawEntryMut::Occupied(RawOccupiedEntryMut { base }), base::RawEntryMut::Vacant(base) => RawEntryMut::Vacant(RawVacantEntryMut { base }), } } #[allow(dead_code)] fn assert_covariance() { fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> { v } fn map_val<'new>(v: HashMap) -> HashMap { v } fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> { v } fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> { v } fn into_iter_key<'new>(v: IntoIter<&'static str, u8>) -> IntoIter<&'new str, u8> { v } fn into_iter_val<'new>(v: IntoIter) -> IntoIter { v } fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> { v } fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> { v } fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> { v } fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> { v } fn drain<'new>( d: Drain<'static, &'static str, &'static str>, ) -> Drain<'new, &'new str, &'new str> { d } }