//! Constants for the `f32` single-precision floating point type. //! //! *[See also the `f32` primitive type](primitive@f32).* //! //! Mathematically significant numbers are provided in the `consts` sub-module. //! //! For the constants defined directly in this module //! (as distinct from those defined in the `consts` sub-module), //! new code should instead use the associated constants //! defined directly on the `f32` type. #![stable(feature = "rust1", since = "1.0.0")] #![allow(missing_docs)] #[cfg(test)] mod tests; #[cfg(not(test))] use crate::intrinsics; #[cfg(not(test))] use crate::sys::cmath; #[stable(feature = "rust1", since = "1.0.0")] #[allow(deprecated, deprecated_in_future)] pub use core::f32::{ consts, DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP, MIN_EXP, MIN_POSITIVE, NAN, NEG_INFINITY, RADIX, }; #[cfg(not(test))] impl f32 { /// Returns the largest integer less than or equal to `self`. /// /// # Examples /// /// ``` /// let f = 3.7_f32; /// let g = 3.0_f32; /// let h = -3.7_f32; /// /// assert_eq!(f.floor(), 3.0); /// assert_eq!(g.floor(), 3.0); /// assert_eq!(h.floor(), -4.0); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn floor(self) -> f32 { unsafe { intrinsics::floorf32(self) } } /// Returns the smallest integer greater than or equal to `self`. /// /// # Examples /// /// ``` /// let f = 3.01_f32; /// let g = 4.0_f32; /// /// assert_eq!(f.ceil(), 4.0); /// assert_eq!(g.ceil(), 4.0); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ceil(self) -> f32 { unsafe { intrinsics::ceilf32(self) } } /// Returns the nearest integer to `self`. Round half-way cases away from /// `0.0`. /// /// # Examples /// /// ``` /// let f = 3.3_f32; /// let g = -3.3_f32; /// let h = -3.7_f32; /// /// assert_eq!(f.round(), 3.0); /// assert_eq!(g.round(), -3.0); /// assert_eq!(h.round(), -4.0); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn round(self) -> f32 { unsafe { intrinsics::roundf32(self) } } /// Returns the integer part of `self`. /// This means that non-integer numbers are always truncated towards zero. /// /// # Examples /// /// ``` /// let f = 3.7_f32; /// let g = 3.0_f32; /// let h = -3.7_f32; /// /// assert_eq!(f.trunc(), 3.0); /// assert_eq!(g.trunc(), 3.0); /// assert_eq!(h.trunc(), -3.0); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn trunc(self) -> f32 { unsafe { intrinsics::truncf32(self) } } /// Returns the fractional part of `self`. /// /// # Examples /// /// ``` /// let x = 3.6_f32; /// let y = -3.6_f32; /// let abs_difference_x = (x.fract() - 0.6).abs(); /// let abs_difference_y = (y.fract() - (-0.6)).abs(); /// /// assert!(abs_difference_x <= f32::EPSILON); /// assert!(abs_difference_y <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn fract(self) -> f32 { self - self.trunc() } /// Computes the absolute value of `self`. /// /// # Examples /// /// ``` /// let x = 3.5_f32; /// let y = -3.5_f32; /// /// let abs_difference_x = (x.abs() - x).abs(); /// let abs_difference_y = (y.abs() - (-y)).abs(); /// /// assert!(abs_difference_x <= f32::EPSILON); /// assert!(abs_difference_y <= f32::EPSILON); /// /// assert!(f32::NAN.abs().is_nan()); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn abs(self) -> f32 { unsafe { intrinsics::fabsf32(self) } } /// Returns a number that represents the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - NaN if the number is NaN /// /// # Examples /// /// ``` /// let f = 3.5_f32; /// /// assert_eq!(f.signum(), 1.0); /// assert_eq!(f32::NEG_INFINITY.signum(), -1.0); /// /// assert!(f32::NAN.signum().is_nan()); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn signum(self) -> f32 { if self.is_nan() { Self::NAN } else { 1.0_f32.copysign(self) } } /// Returns a number composed of the magnitude of `self` and the sign of /// `sign`. /// /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of /// `sign` is returned. Note, however, that conserving the sign bit on NaN /// across arithmetical operations is not generally guaranteed. /// See [explanation of NaN as a special value](primitive@f32) for more info. /// /// # Examples /// /// ``` /// let f = 3.5_f32; /// /// assert_eq!(f.copysign(0.42), 3.5_f32); /// assert_eq!(f.copysign(-0.42), -3.5_f32); /// assert_eq!((-f).copysign(0.42), 3.5_f32); /// assert_eq!((-f).copysign(-0.42), -3.5_f32); /// /// assert!(f32::NAN.copysign(1.0).is_nan()); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[inline] #[stable(feature = "copysign", since = "1.35.0")] pub fn copysign(self, sign: f32) -> f32 { unsafe { intrinsics::copysignf32(self, sign) } } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error, yielding a more accurate result than an unfused multiply-add. /// /// Using `mul_add` *may* be more performant than an unfused multiply-add if /// the target architecture has a dedicated `fma` CPU instruction. However, /// this is not always true, and will be heavily dependant on designing /// algorithms with specific target hardware in mind. /// /// # Examples /// /// ``` /// let m = 10.0_f32; /// let x = 4.0_f32; /// let b = 60.0_f32; /// /// // 100.0 /// let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn mul_add(self, a: f32, b: f32) -> f32 { unsafe { intrinsics::fmaf32(self, a, b) } } /// Calculates Euclidean division, the matching method for `rem_euclid`. /// /// This computes the integer `n` such that /// `self = n * rhs + self.rem_euclid(rhs)`. /// In other words, the result is `self / rhs` rounded to the integer `n` /// such that `self >= n * rhs`. /// /// # Examples /// /// ``` /// let a: f32 = 7.0; /// let b = 4.0; /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0 /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0 /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0 /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0 /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[inline] #[stable(feature = "euclidean_division", since = "1.38.0")] pub fn div_euclid(self, rhs: f32) -> f32 { let q = (self / rhs).trunc(); if self % rhs < 0.0 { return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }; } q } /// Calculates the least nonnegative remainder of `self (mod rhs)`. /// /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in /// most cases. However, due to a floating point round-off error it can /// result in `r == rhs.abs()`, violating the mathematical definition, if /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`. /// This result is not an element of the function's codomain, but it is the /// closest floating point number in the real numbers and thus fulfills the /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)` /// approximately. /// /// # Examples /// /// ``` /// let a: f32 = 7.0; /// let b = 4.0; /// assert_eq!(a.rem_euclid(b), 3.0); /// assert_eq!((-a).rem_euclid(b), 1.0); /// assert_eq!(a.rem_euclid(-b), 3.0); /// assert_eq!((-a).rem_euclid(-b), 1.0); /// // limitation due to round-off error /// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[inline] #[stable(feature = "euclidean_division", since = "1.38.0")] pub fn rem_euclid(self, rhs: f32) -> f32 { let r = self % rhs; if r < 0.0 { r + rhs.abs() } else { r } } /// Raises a number to an integer power. /// /// Using this function is generally faster than using `powf`. /// It might have a different sequence of rounding operations than `powf`, /// so the results are not guaranteed to agree. /// /// # Examples /// /// ``` /// let x = 2.0_f32; /// let abs_difference = (x.powi(2) - (x * x)).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn powi(self, n: i32) -> f32 { unsafe { intrinsics::powif32(self, n) } } /// Raises a number to a floating point power. /// /// # Examples /// /// ``` /// let x = 2.0_f32; /// let abs_difference = (x.powf(2.0) - (x * x)).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn powf(self, n: f32) -> f32 { unsafe { intrinsics::powf32(self, n) } } /// Returns the square root of a number. /// /// Returns NaN if `self` is a negative number other than `-0.0`. /// /// # Examples /// /// ``` /// let positive = 4.0_f32; /// let negative = -4.0_f32; /// let negative_zero = -0.0_f32; /// /// let abs_difference = (positive.sqrt() - 2.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// assert!(negative.sqrt().is_nan()); /// assert!(negative_zero.sqrt() == negative_zero); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sqrt(self) -> f32 { unsafe { intrinsics::sqrtf32(self) } } /// Returns `e^(self)`, (the exponential function). /// /// # Examples /// /// ``` /// let one = 1.0f32; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn exp(self) -> f32 { unsafe { intrinsics::expf32(self) } } /// Returns `2^(self)`. /// /// # Examples /// /// ``` /// let f = 2.0f32; /// /// // 2^2 - 4 == 0 /// let abs_difference = (f.exp2() - 4.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn exp2(self) -> f32 { unsafe { intrinsics::exp2f32(self) } } /// Returns the natural logarithm of the number. /// /// # Examples /// /// ``` /// let one = 1.0f32; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ln(self) -> f32 { unsafe { intrinsics::logf32(self) } } /// Returns the logarithm of the number with respect to an arbitrary base. /// /// The result might not be correctly rounded owing to implementation details; /// `self.log2()` can produce more accurate results for base 2, and /// `self.log10()` can produce more accurate results for base 10. /// /// # Examples /// /// ``` /// let five = 5.0f32; /// /// // log5(5) - 1 == 0 /// let abs_difference = (five.log(5.0) - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn log(self, base: f32) -> f32 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number. /// /// # Examples /// /// ``` /// let two = 2.0f32; /// /// // log2(2) - 1 == 0 /// let abs_difference = (two.log2() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn log2(self) -> f32 { #[cfg(target_os = "android")] return crate::sys::android::log2f32(self); #[cfg(not(target_os = "android"))] return unsafe { intrinsics::log2f32(self) }; } /// Returns the base 10 logarithm of the number. /// /// # Examples /// /// ``` /// let ten = 10.0f32; /// /// // log10(10) - 1 == 0 /// let abs_difference = (ten.log10() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn log10(self) -> f32 { unsafe { intrinsics::log10f32(self) } } /// The positive difference of two numbers. /// /// * If `self <= other`: `0:0` /// * Else: `self - other` /// /// # Examples /// /// ``` /// let x = 3.0f32; /// let y = -3.0f32; /// /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); /// /// assert!(abs_difference_x <= f32::EPSILON); /// assert!(abs_difference_y <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] #[deprecated( since = "1.10.0", note = "you probably meant `(self - other).abs()`: \ this operation is `(self - other).max(0.0)` \ except that `abs_sub` also propagates NaNs (also \ known as `fdimf` in C). If you truly need the positive \ difference, consider using that expression or the C function \ `fdimf`, depending on how you wish to handle NaN (please consider \ filing an issue describing your use-case too)." )] pub fn abs_sub(self, other: f32) -> f32 { unsafe { cmath::fdimf(self, other) } } /// Returns the cube root of a number. /// /// # Examples /// /// ``` /// let x = 8.0f32; /// /// // x^(1/3) - 2 == 0 /// let abs_difference = (x.cbrt() - 2.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cbrt(self) -> f32 { unsafe { cmath::cbrtf(self) } } /// Calculates the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. /// /// # Examples /// /// ``` /// let x = 2.0f32; /// let y = 3.0f32; /// /// // sqrt(x^2 + y^2) /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn hypot(self, other: f32) -> f32 { unsafe { cmath::hypotf(self, other) } } /// Computes the sine of a number (in radians). /// /// # Examples /// /// ``` /// let x = std::f32::consts::FRAC_PI_2; /// /// let abs_difference = (x.sin() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sin(self) -> f32 { unsafe { intrinsics::sinf32(self) } } /// Computes the cosine of a number (in radians). /// /// # Examples /// /// ``` /// let x = 2.0 * std::f32::consts::PI; /// /// let abs_difference = (x.cos() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cos(self) -> f32 { unsafe { intrinsics::cosf32(self) } } /// Computes the tangent of a number (in radians). /// /// # Examples /// /// ``` /// let x = std::f32::consts::FRAC_PI_4; /// let abs_difference = (x.tan() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn tan(self) -> f32 { unsafe { cmath::tanf(self) } } /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. /// /// # Examples /// /// ``` /// let f = std::f32::consts::FRAC_PI_2; /// /// // asin(sin(pi/2)) /// let abs_difference = (f.sin().asin() - std::f32::consts::FRAC_PI_2).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn asin(self) -> f32 { unsafe { cmath::asinf(self) } } /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. /// /// # Examples /// /// ``` /// let f = std::f32::consts::FRAC_PI_4; /// /// // acos(cos(pi/4)) /// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn acos(self) -> f32 { unsafe { cmath::acosf(self) } } /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; /// /// # Examples /// /// ``` /// let f = 1.0f32; /// /// // atan(tan(1)) /// let abs_difference = (f.tan().atan() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn atan(self) -> f32 { unsafe { cmath::atanf(self) } } /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. /// /// * `x = 0`, `y = 0`: `0` /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` /// /// # Examples /// /// ``` /// // Positive angles measured counter-clockwise /// // from positive x axis /// // -pi/4 radians (45 deg clockwise) /// let x1 = 3.0f32; /// let y1 = -3.0f32; /// /// // 3pi/4 radians (135 deg counter-clockwise) /// let x2 = -3.0f32; /// let y2 = 3.0f32; /// /// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs(); /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs(); /// /// assert!(abs_difference_1 <= f32::EPSILON); /// assert!(abs_difference_2 <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn atan2(self, other: f32) -> f32 { unsafe { cmath::atan2f(self, other) } } /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. /// /// # Examples /// /// ``` /// let x = std::f32::consts::FRAC_PI_4; /// let f = x.sin_cos(); /// /// let abs_difference_0 = (f.0 - x.sin()).abs(); /// let abs_difference_1 = (f.1 - x.cos()).abs(); /// /// assert!(abs_difference_0 <= f32::EPSILON); /// assert!(abs_difference_1 <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sin_cos(self) -> (f32, f32) { (self.sin(), self.cos()) } /// Returns `e^(self) - 1` in a way that is accurate even if the /// number is close to zero. /// /// # Examples /// /// ``` /// let x = 1e-8_f32; /// /// // for very small x, e^x is approximately 1 + x + x^2 / 2 /// let approx = x + x * x / 2.0; /// let abs_difference = (x.exp_m1() - approx).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn exp_m1(self) -> f32 { unsafe { cmath::expm1f(self) } } /// Returns `ln(1+n)` (natural logarithm) more accurately than if /// the operations were performed separately. /// /// # Examples /// /// ``` /// let x = 1e-8_f32; /// /// // for very small x, ln(1 + x) is approximately x - x^2 / 2 /// let approx = x - x * x / 2.0; /// let abs_difference = (x.ln_1p() - approx).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn ln_1p(self) -> f32 { unsafe { cmath::log1pf(self) } } /// Hyperbolic sine function. /// /// # Examples /// /// ``` /// let e = std::f32::consts::E; /// let x = 1.0f32; /// /// let f = x.sinh(); /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` /// let g = ((e * e) - 1.0) / (2.0 * e); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sinh(self) -> f32 { unsafe { cmath::sinhf(self) } } /// Hyperbolic cosine function. /// /// # Examples /// /// ``` /// let e = std::f32::consts::E; /// let x = 1.0f32; /// let f = x.cosh(); /// // Solving cosh() at 1 gives this result /// let g = ((e * e) + 1.0) / (2.0 * e); /// let abs_difference = (f - g).abs(); /// /// // Same result /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn cosh(self) -> f32 { unsafe { cmath::coshf(self) } } /// Hyperbolic tangent function. /// /// # Examples /// /// ``` /// let e = std::f32::consts::E; /// let x = 1.0f32; /// /// let f = x.tanh(); /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2)); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn tanh(self) -> f32 { unsafe { cmath::tanhf(self) } } /// Inverse hyperbolic sine function. /// /// # Examples /// /// ``` /// let x = 1.0f32; /// let f = x.sinh().asinh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn asinh(self) -> f32 { let ax = self.abs(); let ix = 1.0 / ax; (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self) } /// Inverse hyperbolic cosine function. /// /// # Examples /// /// ``` /// let x = 1.0f32; /// let f = x.cosh().acosh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn acosh(self) -> f32 { if self < 1.0 { Self::NAN } else { (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln() } } /// Inverse hyperbolic tangent function. /// /// # Examples /// /// ``` /// let e = std::f32::consts::E; /// let f = e.tanh().atanh(); /// /// let abs_difference = (f - e).abs(); /// /// assert!(abs_difference <= 1e-5); /// ``` #[rustc_allow_incoherent_impl] #[must_use = "method returns a new number and does not mutate the original value"] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn atanh(self) -> f32 { 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() } }