#[cfg(test)]
mod tests;
use crate::borrow::{Borrow, Cow};
use crate::cmp;
use crate::collections::TryReserveError;
use crate::fmt;
use crate::hash::{Hash, Hasher};
use crate::ops;
use crate::rc::Rc;
use crate::str::FromStr;
use crate::sync::Arc;
use crate::sys::os_str::{Buf, Slice};
use crate::sys_common::{AsInner, FromInner, IntoInner};
/// A type that can represent owned, mutable platform-native strings, but is
/// cheaply inter-convertible with Rust strings.
///
/// The need for this type arises from the fact that:
///
/// * On Unix systems, strings are often arbitrary sequences of non-zero
/// bytes, in many cases interpreted as UTF-8.
///
/// * On Windows, strings are often arbitrary sequences of non-zero 16-bit
/// values, interpreted as UTF-16 when it is valid to do so.
///
/// * In Rust, strings are always valid UTF-8, which may contain zeros.
///
/// `OsString` and [`OsStr`] bridge this gap by simultaneously representing Rust
/// and platform-native string values, and in particular allowing a Rust string
/// to be converted into an "OS" string with no cost if possible. A consequence
/// of this is that `OsString` instances are *not* `NUL` terminated; in order
/// to pass to e.g., Unix system call, you should create a [`CStr`].
///
/// `OsString` is to &[OsStr]
as [`String`] is to &[str]
: the former
/// in each pair are owned strings; the latter are borrowed
/// references.
///
/// Note, `OsString` and [`OsStr`] internally do not necessarily hold strings in
/// the form native to the platform; While on Unix, strings are stored as a
/// sequence of 8-bit values, on Windows, where strings are 16-bit value based
/// as just discussed, strings are also actually stored as a sequence of 8-bit
/// values, encoded in a less-strict variant of UTF-8. This is useful to
/// understand when handling capacity and length values.
///
/// # Capacity of `OsString`
///
/// Capacity uses units of UTF-8 bytes for OS strings which were created from valid unicode, and
/// uses units of bytes in an unspecified encoding for other contents. On a given target, all
/// `OsString` and `OsStr` values use the same units for capacity, so the following will work:
/// ```
/// use std::ffi::{OsStr, OsString};
///
/// fn concat_os_strings(a: &OsStr, b: &OsStr) -> OsString {
/// let mut ret = OsString::with_capacity(a.len() + b.len()); // This will allocate
/// ret.push(a); // This will not allocate further
/// ret.push(b); // This will not allocate further
/// ret
/// }
/// ```
///
/// # Creating an `OsString`
///
/// **From a Rust string**: `OsString` implements
/// [From]<[String]>
, so you can use my_string.[into]\()
to
/// create an `OsString` from a normal Rust string.
///
/// **From slices:** Just like you can start with an empty Rust
/// [`String`] and then [`String::push_str`] some &[str]
/// sub-string slices into it, you can create an empty `OsString` with
/// the [`OsString::new`] method and then push string slices into it with the
/// [`OsString::push`] method.
///
/// # Extracting a borrowed reference to the whole OS string
///
/// You can use the [`OsString::as_os_str`] method to get an &[OsStr]
from
/// an `OsString`; this is effectively a borrowed reference to the
/// whole string.
///
/// # Conversions
///
/// See the [module's toplevel documentation about conversions][conversions] for a discussion on
/// the traits which `OsString` implements for [conversions] from/to native representations.
///
/// [`CStr`]: crate::ffi::CStr
/// [conversions]: super#conversions
/// [into]: Into::into
#[cfg_attr(not(test), rustc_diagnostic_item = "OsString")]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct OsString {
inner: Buf,
}
/// Allows extension traits within `std`.
#[unstable(feature = "sealed", issue = "none")]
impl crate::sealed::Sealed for OsString {}
/// Borrowed reference to an OS string (see [`OsString`]).
///
/// This type represents a borrowed reference to a string in the operating system's preferred
/// representation.
///
/// `&OsStr` is to [`OsString`] as &[str]
is to [`String`]: the
/// former in each pair are borrowed references; the latter are owned strings.
///
/// See the [module's toplevel documentation about conversions][conversions] for a discussion on
/// the traits which `OsStr` implements for [conversions] from/to native representations.
///
/// [conversions]: super#conversions
#[cfg_attr(not(test), rustc_diagnostic_item = "OsStr")]
#[stable(feature = "rust1", since = "1.0.0")]
// FIXME:
// `OsStr::from_inner` current implementation relies
// on `OsStr` being layout-compatible with `Slice`.
// When attribute privacy is implemented, `OsStr` should be annotated as `#[repr(transparent)]`.
// Anyway, `OsStr` representation and layout are considered implementation details, are
// not documented and must not be relied upon.
pub struct OsStr {
inner: Slice,
}
/// Allows extension traits within `std`.
#[unstable(feature = "sealed", issue = "none")]
impl crate::sealed::Sealed for OsStr {}
impl OsString {
/// Constructs a new empty `OsString`.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let os_string = OsString::new();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
#[inline]
pub fn new() -> OsString {
OsString { inner: Buf::from_string(String::new()) }
}
/// Converts to an [`OsStr`] slice.
///
/// # Examples
///
/// ```
/// use std::ffi::{OsString, OsStr};
///
/// let os_string = OsString::from("foo");
/// let os_str = OsStr::new("foo");
/// assert_eq!(os_string.as_os_str(), os_str);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use]
#[inline]
pub fn as_os_str(&self) -> &OsStr {
self
}
/// Converts the `OsString` into a [`String`] if it contains valid Unicode data.
///
/// On failure, ownership of the original `OsString` is returned.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let os_string = OsString::from("foo");
/// let string = os_string.into_string();
/// assert_eq!(string, Ok(String::from("foo")));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn into_string(self) -> Result {
self.inner.into_string().map_err(|buf| OsString { inner: buf })
}
/// Extends the string with the given &[OsStr]
slice.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut os_string = OsString::from("foo");
/// os_string.push("bar");
/// assert_eq!(&os_string, "foobar");
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
pub fn push>(&mut self, s: T) {
self.inner.push_slice(&s.as_ref().inner)
}
/// Creates a new `OsString` with at least the given capacity.
///
/// The string will be able to hold at least `capacity` length units of other
/// OS strings without reallocating. This method is allowed to allocate for
/// more units than `capacity`. If `capacity` is 0, the string will not
/// allocate.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut os_string = OsString::with_capacity(10);
/// let capacity = os_string.capacity();
///
/// // This push is done without reallocating
/// os_string.push("foo");
///
/// assert_eq!(capacity, os_string.capacity());
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[must_use]
#[inline]
pub fn with_capacity(capacity: usize) -> OsString {
OsString { inner: Buf::with_capacity(capacity) }
}
/// Truncates the `OsString` to zero length.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut os_string = OsString::from("foo");
/// assert_eq!(&os_string, "foo");
///
/// os_string.clear();
/// assert_eq!(&os_string, "");
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[inline]
pub fn clear(&mut self) {
self.inner.clear()
}
/// Returns the capacity this `OsString` can hold without reallocating.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let os_string = OsString::with_capacity(10);
/// assert!(os_string.capacity() >= 10);
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[must_use]
#[inline]
pub fn capacity(&self) -> usize {
self.inner.capacity()
}
/// Reserves capacity for at least `additional` more capacity to be inserted
/// in the given `OsString`. Does nothing if the capacity is
/// already sufficient.
///
/// The collection may reserve more space to speculatively avoid frequent reallocations.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut s = OsString::new();
/// s.reserve(10);
/// assert!(s.capacity() >= 10);
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[inline]
pub fn reserve(&mut self, additional: usize) {
self.inner.reserve(additional)
}
/// Tries to reserve capacity for at least `additional` more length units
/// in the given `OsString`. The string may reserve more space to speculatively avoid
/// frequent reallocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if capacity is already sufficient. This method preserves
/// the contents even if an error occurs.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::ffi::{OsStr, OsString};
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &str) -> Result {
/// let mut s = OsString::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// s.try_reserve(OsStr::new(data).len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// s.push(data);
///
/// Ok(s)
/// }
/// # process_data("123").expect("why is the test harness OOMing on 3 bytes?");
/// ```
#[stable(feature = "try_reserve_2", since = "1.63.0")]
#[inline]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.inner.try_reserve(additional)
}
/// Reserves the minimum capacity for at least `additional` more capacity to
/// be inserted in the given `OsString`. Does nothing if the capacity is
/// already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`reserve`] if future insertions are expected.
///
/// [`reserve`]: OsString::reserve
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut s = OsString::new();
/// s.reserve_exact(10);
/// assert!(s.capacity() >= 10);
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[inline]
pub fn reserve_exact(&mut self, additional: usize) {
self.inner.reserve_exact(additional)
}
/// Tries to reserve the minimum capacity for at least `additional`
/// more length units in the given `OsString`. After calling
/// `try_reserve_exact`, capacity will be greater than or equal to
/// `self.len() + additional` if it returns `Ok(())`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the `OsString` more space than it
/// requests. Therefore, capacity can not be relied upon to be precisely
/// minimal. Prefer [`try_reserve`] if future insertions are expected.
///
/// [`try_reserve`]: OsString::try_reserve
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Errors
///
/// If the capacity overflows, or the allocator reports a failure, then an error
/// is returned.
///
/// # Examples
///
/// ```
/// use std::ffi::{OsStr, OsString};
/// use std::collections::TryReserveError;
///
/// fn process_data(data: &str) -> Result {
/// let mut s = OsString::new();
///
/// // Pre-reserve the memory, exiting if we can't
/// s.try_reserve_exact(OsStr::new(data).len())?;
///
/// // Now we know this can't OOM in the middle of our complex work
/// s.push(data);
///
/// Ok(s)
/// }
/// # process_data("123").expect("why is the test harness OOMing on 3 bytes?");
/// ```
#[stable(feature = "try_reserve_2", since = "1.63.0")]
#[inline]
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.inner.try_reserve_exact(additional)
}
/// Shrinks the capacity of the `OsString` to match its length.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut s = OsString::from("foo");
///
/// s.reserve(100);
/// assert!(s.capacity() >= 100);
///
/// s.shrink_to_fit();
/// assert_eq!(3, s.capacity());
/// ```
#[stable(feature = "osstring_shrink_to_fit", since = "1.19.0")]
#[inline]
pub fn shrink_to_fit(&mut self) {
self.inner.shrink_to_fit()
}
/// Shrinks the capacity of the `OsString` with a lower bound.
///
/// The capacity will remain at least as large as both the length
/// and the supplied value.
///
/// If the current capacity is less than the lower limit, this is a no-op.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut s = OsString::from("foo");
///
/// s.reserve(100);
/// assert!(s.capacity() >= 100);
///
/// s.shrink_to(10);
/// assert!(s.capacity() >= 10);
/// s.shrink_to(0);
/// assert!(s.capacity() >= 3);
/// ```
#[inline]
#[stable(feature = "shrink_to", since = "1.56.0")]
pub fn shrink_to(&mut self, min_capacity: usize) {
self.inner.shrink_to(min_capacity)
}
/// Converts this `OsString` into a boxed [`OsStr`].
///
/// # Examples
///
/// ```
/// use std::ffi::{OsString, OsStr};
///
/// let s = OsString::from("hello");
///
/// let b: Box = s.into_boxed_os_str();
/// ```
#[must_use = "`self` will be dropped if the result is not used"]
#[stable(feature = "into_boxed_os_str", since = "1.20.0")]
pub fn into_boxed_os_str(self) -> Box {
let rw = Box::into_raw(self.inner.into_box()) as *mut OsStr;
unsafe { Box::from_raw(rw) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl From for OsString {
/// Converts a [`String`] into an [`OsString`].
///
/// This conversion does not allocate or copy memory.
#[inline]
fn from(s: String) -> OsString {
OsString { inner: Buf::from_string(s) }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl> From<&T> for OsString {
/// Copies any value implementing [AsRef]<[OsStr]>
/// into a newly allocated [`OsString`].
fn from(s: &T) -> OsString {
s.as_ref().to_os_string()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl ops::Index for OsString {
type Output = OsStr;
#[inline]
fn index(&self, _index: ops::RangeFull) -> &OsStr {
OsStr::from_inner(self.inner.as_slice())
}
}
#[stable(feature = "mut_osstr", since = "1.44.0")]
impl ops::IndexMut for OsString {
#[inline]
fn index_mut(&mut self, _index: ops::RangeFull) -> &mut OsStr {
OsStr::from_inner_mut(self.inner.as_mut_slice())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl ops::Deref for OsString {
type Target = OsStr;
#[inline]
fn deref(&self) -> &OsStr {
&self[..]
}
}
#[stable(feature = "mut_osstr", since = "1.44.0")]
impl ops::DerefMut for OsString {
#[inline]
fn deref_mut(&mut self) -> &mut OsStr {
&mut self[..]
}
}
#[stable(feature = "osstring_default", since = "1.9.0")]
impl Default for OsString {
/// Constructs an empty `OsString`.
#[inline]
fn default() -> OsString {
OsString::new()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for OsString {
#[inline]
fn clone(&self) -> Self {
OsString { inner: self.inner.clone() }
}
#[inline]
fn clone_from(&mut self, source: &Self) {
self.inner.clone_from(&source.inner)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for OsString {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, formatter)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for OsString {
#[inline]
fn eq(&self, other: &OsString) -> bool {
&**self == &**other
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for OsString {
#[inline]
fn eq(&self, other: &str) -> bool {
&**self == other
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for str {
#[inline]
fn eq(&self, other: &OsString) -> bool {
&**other == self
}
}
#[stable(feature = "os_str_str_ref_eq", since = "1.29.0")]
impl PartialEq<&str> for OsString {
#[inline]
fn eq(&self, other: &&str) -> bool {
**self == **other
}
}
#[stable(feature = "os_str_str_ref_eq", since = "1.29.0")]
impl<'a> PartialEq for &'a str {
#[inline]
fn eq(&self, other: &OsString) -> bool {
**other == **self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for OsString {}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for OsString {
#[inline]
fn partial_cmp(&self, other: &OsString) -> Option {
(&**self).partial_cmp(&**other)
}
#[inline]
fn lt(&self, other: &OsString) -> bool {
&**self < &**other
}
#[inline]
fn le(&self, other: &OsString) -> bool {
&**self <= &**other
}
#[inline]
fn gt(&self, other: &OsString) -> bool {
&**self > &**other
}
#[inline]
fn ge(&self, other: &OsString) -> bool {
&**self >= &**other
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for OsString {
#[inline]
fn partial_cmp(&self, other: &str) -> Option {
(&**self).partial_cmp(other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for OsString {
#[inline]
fn cmp(&self, other: &OsString) -> cmp::Ordering {
(&**self).cmp(&**other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for OsString {
#[inline]
fn hash(&self, state: &mut H) {
(&**self).hash(state)
}
}
#[stable(feature = "os_string_fmt_write", since = "1.64.0")]
impl fmt::Write for OsString {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.push(s);
Ok(())
}
}
impl OsStr {
/// Coerces into an `OsStr` slice.
///
/// # Examples
///
/// ```
/// use std::ffi::OsStr;
///
/// let os_str = OsStr::new("foo");
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new + ?Sized>(s: &S) -> &OsStr {
s.as_ref()
}
#[inline]
fn from_inner(inner: &Slice) -> &OsStr {
// SAFETY: OsStr is just a wrapper of Slice,
// therefore converting &Slice to &OsStr is safe.
unsafe { &*(inner as *const Slice as *const OsStr) }
}
#[inline]
fn from_inner_mut(inner: &mut Slice) -> &mut OsStr {
// SAFETY: OsStr is just a wrapper of Slice,
// therefore converting &mut Slice to &mut OsStr is safe.
// Any method that mutates OsStr must be careful not to
// break platform-specific encoding, in particular Wtf8 on Windows.
unsafe { &mut *(inner as *mut Slice as *mut OsStr) }
}
/// Yields a &[str]
slice if the `OsStr` is valid Unicode.
///
/// This conversion may entail doing a check for UTF-8 validity.
///
/// # Examples
///
/// ```
/// use std::ffi::OsStr;
///
/// let os_str = OsStr::new("foo");
/// assert_eq!(os_str.to_str(), Some("foo"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub fn to_str(&self) -> Option<&str> {
self.inner.to_str()
}
/// Converts an `OsStr` to a [Cow]<[str]>
.
///
/// Any non-Unicode sequences are replaced with
/// [`U+FFFD REPLACEMENT CHARACTER`][U+FFFD].
///
/// [U+FFFD]: crate::char::REPLACEMENT_CHARACTER
///
/// # Examples
///
/// Calling `to_string_lossy` on an `OsStr` with invalid unicode:
///
/// ```
/// // Note, due to differences in how Unix and Windows represent strings,
/// // we are forced to complicate this example, setting up example `OsStr`s
/// // with different source data and via different platform extensions.
/// // Understand that in reality you could end up with such example invalid
/// // sequences simply through collecting user command line arguments, for
/// // example.
///
/// #[cfg(unix)] {
/// use std::ffi::OsStr;
/// use std::os::unix::ffi::OsStrExt;
///
/// // Here, the values 0x66 and 0x6f correspond to 'f' and 'o'
/// // respectively. The value 0x80 is a lone continuation byte, invalid
/// // in a UTF-8 sequence.
/// let source = [0x66, 0x6f, 0x80, 0x6f];
/// let os_str = OsStr::from_bytes(&source[..]);
///
/// assert_eq!(os_str.to_string_lossy(), "fo�o");
/// }
/// #[cfg(windows)] {
/// use std::ffi::OsString;
/// use std::os::windows::prelude::*;
///
/// // Here the values 0x0066 and 0x006f correspond to 'f' and 'o'
/// // respectively. The value 0xD800 is a lone surrogate half, invalid
/// // in a UTF-16 sequence.
/// let source = [0x0066, 0x006f, 0xD800, 0x006f];
/// let os_string = OsString::from_wide(&source[..]);
/// let os_str = os_string.as_os_str();
///
/// assert_eq!(os_str.to_string_lossy(), "fo�o");
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub fn to_string_lossy(&self) -> Cow<'_, str> {
self.inner.to_string_lossy()
}
/// Copies the slice into an owned [`OsString`].
///
/// # Examples
///
/// ```
/// use std::ffi::{OsStr, OsString};
///
/// let os_str = OsStr::new("foo");
/// let os_string = os_str.to_os_string();
/// assert_eq!(os_string, OsString::from("foo"));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub fn to_os_string(&self) -> OsString {
OsString { inner: self.inner.to_owned() }
}
/// Checks whether the `OsStr` is empty.
///
/// # Examples
///
/// ```
/// use std::ffi::OsStr;
///
/// let os_str = OsStr::new("");
/// assert!(os_str.is_empty());
///
/// let os_str = OsStr::new("foo");
/// assert!(!os_str.is_empty());
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[must_use]
#[inline]
pub fn is_empty(&self) -> bool {
self.inner.inner.is_empty()
}
/// Returns the length of this `OsStr`.
///
/// Note that this does **not** return the number of bytes in the string in
/// OS string form.
///
/// The length returned is that of the underlying storage used by `OsStr`.
/// As discussed in the [`OsString`] introduction, [`OsString`] and `OsStr`
/// store strings in a form best suited for cheap inter-conversion between
/// native-platform and Rust string forms, which may differ significantly
/// from both of them, including in storage size and encoding.
///
/// This number is simply useful for passing to other methods, like
/// [`OsString::with_capacity`] to avoid reallocations.
///
/// See the main `OsString` documentation information about encoding and capacity units.
///
/// # Examples
///
/// ```
/// use std::ffi::OsStr;
///
/// let os_str = OsStr::new("");
/// assert_eq!(os_str.len(), 0);
///
/// let os_str = OsStr::new("foo");
/// assert_eq!(os_str.len(), 3);
/// ```
#[stable(feature = "osstring_simple_functions", since = "1.9.0")]
#[must_use]
#[inline]
pub fn len(&self) -> usize {
self.inner.inner.len()
}
/// Converts a [Box]<[OsStr]>
into an [`OsString`] without copying or allocating.
#[stable(feature = "into_boxed_os_str", since = "1.20.0")]
#[must_use = "`self` will be dropped if the result is not used"]
pub fn into_os_string(self: Box) -> OsString {
let boxed = unsafe { Box::from_raw(Box::into_raw(self) as *mut Slice) };
OsString { inner: Buf::from_box(boxed) }
}
/// Gets the underlying byte representation.
///
/// Note: it is *crucial* that this API is not externally public, to avoid
/// revealing the internal, platform-specific encodings.
#[inline]
pub(crate) fn bytes(&self) -> &[u8] {
unsafe { &*(&self.inner as *const _ as *const [u8]) }
}
/// Converts this string to its ASCII lower case equivalent in-place.
///
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
/// but non-ASCII letters are unchanged.
///
/// To return a new lowercased value without modifying the existing one, use
/// [`OsStr::to_ascii_lowercase`].
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut s = OsString::from("GRÜßE, JÜRGEN ❤");
///
/// s.make_ascii_lowercase();
///
/// assert_eq!("grÜße, jÜrgen ❤", s);
/// ```
#[stable(feature = "osstring_ascii", since = "1.53.0")]
#[inline]
pub fn make_ascii_lowercase(&mut self) {
self.inner.make_ascii_lowercase()
}
/// Converts this string to its ASCII upper case equivalent in-place.
///
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
/// but non-ASCII letters are unchanged.
///
/// To return a new uppercased value without modifying the existing one, use
/// [`OsStr::to_ascii_uppercase`].
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let mut s = OsString::from("Grüße, Jürgen ❤");
///
/// s.make_ascii_uppercase();
///
/// assert_eq!("GRüßE, JüRGEN ❤", s);
/// ```
#[stable(feature = "osstring_ascii", since = "1.53.0")]
#[inline]
pub fn make_ascii_uppercase(&mut self) {
self.inner.make_ascii_uppercase()
}
/// Returns a copy of this string where each character is mapped to its
/// ASCII lower case equivalent.
///
/// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
/// but non-ASCII letters are unchanged.
///
/// To lowercase the value in-place, use [`OsStr::make_ascii_lowercase`].
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
/// let s = OsString::from("Grüße, Jürgen ❤");
///
/// assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
/// ```
#[must_use = "to lowercase the value in-place, use `make_ascii_lowercase`"]
#[stable(feature = "osstring_ascii", since = "1.53.0")]
pub fn to_ascii_lowercase(&self) -> OsString {
OsString::from_inner(self.inner.to_ascii_lowercase())
}
/// Returns a copy of this string where each character is mapped to its
/// ASCII upper case equivalent.
///
/// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
/// but non-ASCII letters are unchanged.
///
/// To uppercase the value in-place, use [`OsStr::make_ascii_uppercase`].
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
/// let s = OsString::from("Grüße, Jürgen ❤");
///
/// assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
/// ```
#[must_use = "to uppercase the value in-place, use `make_ascii_uppercase`"]
#[stable(feature = "osstring_ascii", since = "1.53.0")]
pub fn to_ascii_uppercase(&self) -> OsString {
OsString::from_inner(self.inner.to_ascii_uppercase())
}
/// Checks if all characters in this string are within the ASCII range.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// let ascii = OsString::from("hello!\n");
/// let non_ascii = OsString::from("Grüße, Jürgen ❤");
///
/// assert!(ascii.is_ascii());
/// assert!(!non_ascii.is_ascii());
/// ```
#[stable(feature = "osstring_ascii", since = "1.53.0")]
#[must_use]
#[inline]
pub fn is_ascii(&self) -> bool {
self.inner.is_ascii()
}
/// Checks that two strings are an ASCII case-insensitive match.
///
/// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
/// but without allocating and copying temporaries.
///
/// # Examples
///
/// ```
/// use std::ffi::OsString;
///
/// assert!(OsString::from("Ferris").eq_ignore_ascii_case("FERRIS"));
/// assert!(OsString::from("Ferrös").eq_ignore_ascii_case("FERRöS"));
/// assert!(!OsString::from("Ferrös").eq_ignore_ascii_case("FERRÖS"));
/// ```
#[stable(feature = "osstring_ascii", since = "1.53.0")]
pub fn eq_ignore_ascii_case>(&self, other: S) -> bool {
self.inner.eq_ignore_ascii_case(&other.as_ref().inner)
}
}
#[stable(feature = "box_from_os_str", since = "1.17.0")]
impl From<&OsStr> for Box {
/// Copies the string into a newly allocated [Box]<[OsStr]>
.
#[inline]
fn from(s: &OsStr) -> Box {
let rw = Box::into_raw(s.inner.into_box()) as *mut OsStr;
unsafe { Box::from_raw(rw) }
}
}
#[stable(feature = "box_from_cow", since = "1.45.0")]
impl From> for Box {
/// Converts a `Cow<'a, OsStr>` into a [Box]<[OsStr]>
,
/// by copying the contents if they are borrowed.
#[inline]
fn from(cow: Cow<'_, OsStr>) -> Box {
match cow {
Cow::Borrowed(s) => Box::from(s),
Cow::Owned(s) => Box::from(s),
}
}
}
#[stable(feature = "os_string_from_box", since = "1.18.0")]
impl From> for OsString {
/// Converts a [Box]<[OsStr]>
into an [`OsString`] without copying or
/// allocating.
#[inline]
fn from(boxed: Box) -> OsString {
boxed.into_os_string()
}
}
#[stable(feature = "box_from_os_string", since = "1.20.0")]
impl From for Box {
/// Converts an [`OsString`] into a [Box]<[OsStr]>
without copying or allocating.
#[inline]
fn from(s: OsString) -> Box {
s.into_boxed_os_str()
}
}
#[stable(feature = "more_box_slice_clone", since = "1.29.0")]
impl Clone for Box {
#[inline]
fn clone(&self) -> Self {
self.to_os_string().into_boxed_os_str()
}
}
#[stable(feature = "shared_from_slice2", since = "1.24.0")]
impl From for Arc {
/// Converts an [`OsString`] into an [Arc]<[OsStr]>
by moving the [`OsString`]
/// data into a new [`Arc`] buffer.
#[inline]
fn from(s: OsString) -> Arc {
let arc = s.inner.into_arc();
unsafe { Arc::from_raw(Arc::into_raw(arc) as *const OsStr) }
}
}
#[stable(feature = "shared_from_slice2", since = "1.24.0")]
impl From<&OsStr> for Arc {
/// Copies the string into a newly allocated [Arc]<[OsStr]>
.
#[inline]
fn from(s: &OsStr) -> Arc {
let arc = s.inner.into_arc();
unsafe { Arc::from_raw(Arc::into_raw(arc) as *const OsStr) }
}
}
#[stable(feature = "shared_from_slice2", since = "1.24.0")]
impl From for Rc {
/// Converts an [`OsString`] into an [Rc]<[OsStr]>
by moving the [`OsString`]
/// data into a new [`Rc`] buffer.
#[inline]
fn from(s: OsString) -> Rc {
let rc = s.inner.into_rc();
unsafe { Rc::from_raw(Rc::into_raw(rc) as *const OsStr) }
}
}
#[stable(feature = "shared_from_slice2", since = "1.24.0")]
impl From<&OsStr> for Rc {
/// Copies the string into a newly allocated [Rc]<[OsStr]>
.
#[inline]
fn from(s: &OsStr) -> Rc {
let rc = s.inner.into_rc();
unsafe { Rc::from_raw(Rc::into_raw(rc) as *const OsStr) }
}
}
#[stable(feature = "cow_from_osstr", since = "1.28.0")]
impl<'a> From for Cow<'a, OsStr> {
/// Moves the string into a [`Cow::Owned`].
#[inline]
fn from(s: OsString) -> Cow<'a, OsStr> {
Cow::Owned(s)
}
}
#[stable(feature = "cow_from_osstr", since = "1.28.0")]
impl<'a> From<&'a OsStr> for Cow<'a, OsStr> {
/// Converts the string reference into a [`Cow::Borrowed`].
#[inline]
fn from(s: &'a OsStr) -> Cow<'a, OsStr> {
Cow::Borrowed(s)
}
}
#[stable(feature = "cow_from_osstr", since = "1.28.0")]
impl<'a> From<&'a OsString> for Cow<'a, OsStr> {
/// Converts the string reference into a [`Cow::Borrowed`].
#[inline]
fn from(s: &'a OsString) -> Cow<'a, OsStr> {
Cow::Borrowed(s.as_os_str())
}
}
#[stable(feature = "osstring_from_cow_osstr", since = "1.28.0")]
impl<'a> From> for OsString {
/// Converts a `Cow<'a, OsStr>` into an [`OsString`],
/// by copying the contents if they are borrowed.
#[inline]
fn from(s: Cow<'a, OsStr>) -> Self {
s.into_owned()
}
}
#[stable(feature = "box_default_extra", since = "1.17.0")]
impl Default for Box {
#[inline]
fn default() -> Box {
let rw = Box::into_raw(Slice::empty_box()) as *mut OsStr;
unsafe { Box::from_raw(rw) }
}
}
#[stable(feature = "osstring_default", since = "1.9.0")]
impl Default for &OsStr {
/// Creates an empty `OsStr`.
#[inline]
fn default() -> Self {
OsStr::new("")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for OsStr {
#[inline]
fn eq(&self, other: &OsStr) -> bool {
self.bytes().eq(other.bytes())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for OsStr {
#[inline]
fn eq(&self, other: &str) -> bool {
*self == *OsStr::new(other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for str {
#[inline]
fn eq(&self, other: &OsStr) -> bool {
*other == *OsStr::new(self)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for OsStr {}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for OsStr {
#[inline]
fn partial_cmp(&self, other: &OsStr) -> Option {
self.bytes().partial_cmp(other.bytes())
}
#[inline]
fn lt(&self, other: &OsStr) -> bool {
self.bytes().lt(other.bytes())
}
#[inline]
fn le(&self, other: &OsStr) -> bool {
self.bytes().le(other.bytes())
}
#[inline]
fn gt(&self, other: &OsStr) -> bool {
self.bytes().gt(other.bytes())
}
#[inline]
fn ge(&self, other: &OsStr) -> bool {
self.bytes().ge(other.bytes())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for OsStr {
#[inline]
fn partial_cmp(&self, other: &str) -> Option {
self.partial_cmp(OsStr::new(other))
}
}
// FIXME (#19470): cannot provide PartialOrd for str until we
// have more flexible coherence rules.
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for OsStr {
#[inline]
fn cmp(&self, other: &OsStr) -> cmp::Ordering {
self.bytes().cmp(other.bytes())
}
}
macro_rules! impl_cmp {
($lhs:ty, $rhs: ty) => {
#[stable(feature = "cmp_os_str", since = "1.8.0")]
impl<'a, 'b> PartialEq<$rhs> for $lhs {
#[inline]
fn eq(&self, other: &$rhs) -> bool {
::eq(self, other)
}
}
#[stable(feature = "cmp_os_str", since = "1.8.0")]
impl<'a, 'b> PartialEq<$lhs> for $rhs {
#[inline]
fn eq(&self, other: &$lhs) -> bool {
::eq(self, other)
}
}
#[stable(feature = "cmp_os_str", since = "1.8.0")]
impl<'a, 'b> PartialOrd<$rhs> for $lhs {
#[inline]
fn partial_cmp(&self, other: &$rhs) -> Option {
::partial_cmp(self, other)
}
}
#[stable(feature = "cmp_os_str", since = "1.8.0")]
impl<'a, 'b> PartialOrd<$lhs> for $rhs {
#[inline]
fn partial_cmp(&self, other: &$lhs) -> Option {
::partial_cmp(self, other)
}
}
};
}
impl_cmp!(OsString, OsStr);
impl_cmp!(OsString, &'a OsStr);
impl_cmp!(Cow<'a, OsStr>, OsStr);
impl_cmp!(Cow<'a, OsStr>, &'b OsStr);
impl_cmp!(Cow<'a, OsStr>, OsString);
#[stable(feature = "rust1", since = "1.0.0")]
impl Hash for OsStr {
#[inline]
fn hash(&self, state: &mut H) {
self.bytes().hash(state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for OsStr {
fn fmt(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.inner, formatter)
}
}
impl OsStr {
pub(crate) fn display(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&self.inner, formatter)
}
}
#[unstable(feature = "slice_concat_ext", issue = "27747")]
impl> alloc::slice::Join<&OsStr> for [S] {
type Output = OsString;
fn join(slice: &Self, sep: &OsStr) -> OsString {
let Some((first, suffix)) = slice.split_first() else {
return OsString::new();
};
let first_owned = first.borrow().to_owned();
suffix.iter().fold(first_owned, |mut a, b| {
a.push(sep);
a.push(b.borrow());
a
})
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Borrow for OsString {
#[inline]
fn borrow(&self) -> &OsStr {
&self[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl ToOwned for OsStr {
type Owned = OsString;
#[inline]
fn to_owned(&self) -> OsString {
self.to_os_string()
}
#[inline]
fn clone_into(&self, target: &mut OsString) {
self.inner.clone_into(&mut target.inner)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef for OsStr {
#[inline]
fn as_ref(&self) -> &OsStr {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef for OsString {
#[inline]
fn as_ref(&self) -> &OsStr {
self
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef for str {
#[inline]
fn as_ref(&self) -> &OsStr {
OsStr::from_inner(Slice::from_str(self))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl AsRef for String {
#[inline]
fn as_ref(&self) -> &OsStr {
(&**self).as_ref()
}
}
impl FromInner for OsString {
#[inline]
fn from_inner(buf: Buf) -> OsString {
OsString { inner: buf }
}
}
impl IntoInner for OsString {
#[inline]
fn into_inner(self) -> Buf {
self.inner
}
}
impl AsInner for OsStr {
#[inline]
fn as_inner(&self) -> &Slice {
&self.inner
}
}
#[stable(feature = "osstring_from_str", since = "1.45.0")]
impl FromStr for OsString {
type Err = core::convert::Infallible;
#[inline]
fn from_str(s: &str) -> Result {
Ok(OsString::from(s))
}
}
#[stable(feature = "osstring_extend", since = "1.52.0")]
impl Extend for OsString {
#[inline]
fn extend>(&mut self, iter: T) {
for s in iter {
self.push(&s);
}
}
}
#[stable(feature = "osstring_extend", since = "1.52.0")]
impl<'a> Extend<&'a OsStr> for OsString {
#[inline]
fn extend>(&mut self, iter: T) {
for s in iter {
self.push(s);
}
}
}
#[stable(feature = "osstring_extend", since = "1.52.0")]
impl<'a> Extend> for OsString {
#[inline]
fn extend>>(&mut self, iter: T) {
for s in iter {
self.push(&s);
}
}
}
#[stable(feature = "osstring_extend", since = "1.52.0")]
impl FromIterator for OsString {
#[inline]
fn from_iter>(iter: I) -> Self {
let mut iterator = iter.into_iter();
// Because we're iterating over `OsString`s, we can avoid at least
// one allocation by getting the first string from the iterator
// and appending to it all the subsequent strings.
match iterator.next() {
None => OsString::new(),
Some(mut buf) => {
buf.extend(iterator);
buf
}
}
}
}
#[stable(feature = "osstring_extend", since = "1.52.0")]
impl<'a> FromIterator<&'a OsStr> for OsString {
#[inline]
fn from_iter>(iter: I) -> Self {
let mut buf = Self::new();
for s in iter {
buf.push(s);
}
buf
}
}
#[stable(feature = "osstring_extend", since = "1.52.0")]
impl<'a> FromIterator> for OsString {
#[inline]
fn from_iter>>(iter: I) -> Self {
let mut iterator = iter.into_iter();
// Because we're iterating over `OsString`s, we can avoid at least
// one allocation by getting the first owned string from the iterator
// and appending to it all the subsequent strings.
match iterator.next() {
None => OsString::new(),
Some(Cow::Owned(mut buf)) => {
buf.extend(iterator);
buf
}
Some(Cow::Borrowed(buf)) => {
let mut buf = OsString::from(buf);
buf.extend(iterator);
buf
}
}
}
}