use crate::io::prelude::*; use crate::io::{ self, BorrowedBuf, BufReader, BufWriter, ErrorKind, IoSlice, LineWriter, SeekFrom, }; use crate::mem::MaybeUninit; use crate::panic; use crate::sync::atomic::{AtomicUsize, Ordering}; use crate::thread; /// A dummy reader intended at testing short-reads propagation. pub struct ShortReader { lengths: Vec, } // FIXME: rustfmt and tidy disagree about the correct formatting of this // function. This leads to issues for users with editors configured to // rustfmt-on-save. impl Read for ShortReader { fn read(&mut self, _: &mut [u8]) -> io::Result { if self.lengths.is_empty() { Ok(0) } else { Ok(self.lengths.remove(0)) } } } #[test] fn test_buffered_reader() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(2, inner); let mut buf = [0, 0, 0]; let nread = reader.read(&mut buf); assert_eq!(nread.unwrap(), 3); assert_eq!(buf, [5, 6, 7]); assert_eq!(reader.buffer(), []); let mut buf = [0, 0]; let nread = reader.read(&mut buf); assert_eq!(nread.unwrap(), 2); assert_eq!(buf, [0, 1]); assert_eq!(reader.buffer(), []); let mut buf = [0]; let nread = reader.read(&mut buf); assert_eq!(nread.unwrap(), 1); assert_eq!(buf, [2]); assert_eq!(reader.buffer(), [3]); let mut buf = [0, 0, 0]; let nread = reader.read(&mut buf); assert_eq!(nread.unwrap(), 1); assert_eq!(buf, [3, 0, 0]); assert_eq!(reader.buffer(), []); let nread = reader.read(&mut buf); assert_eq!(nread.unwrap(), 1); assert_eq!(buf, [4, 0, 0]); assert_eq!(reader.buffer(), []); assert_eq!(reader.read(&mut buf).unwrap(), 0); } #[test] fn test_buffered_reader_read_buf() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(2, inner); let buf: &mut [_] = &mut [MaybeUninit::uninit(); 3]; let mut buf: BorrowedBuf<'_> = buf.into(); reader.read_buf(buf.unfilled()).unwrap(); assert_eq!(buf.filled(), [5, 6, 7]); assert_eq!(reader.buffer(), []); let buf: &mut [_] = &mut [MaybeUninit::uninit(); 2]; let mut buf: BorrowedBuf<'_> = buf.into(); reader.read_buf(buf.unfilled()).unwrap(); assert_eq!(buf.filled(), [0, 1]); assert_eq!(reader.buffer(), []); let buf: &mut [_] = &mut [MaybeUninit::uninit(); 1]; let mut buf: BorrowedBuf<'_> = buf.into(); reader.read_buf(buf.unfilled()).unwrap(); assert_eq!(buf.filled(), [2]); assert_eq!(reader.buffer(), [3]); let buf: &mut [_] = &mut [MaybeUninit::uninit(); 3]; let mut buf: BorrowedBuf<'_> = buf.into(); reader.read_buf(buf.unfilled()).unwrap(); assert_eq!(buf.filled(), [3]); assert_eq!(reader.buffer(), []); reader.read_buf(buf.unfilled()).unwrap(); assert_eq!(buf.filled(), [3, 4]); assert_eq!(reader.buffer(), []); buf.clear(); reader.read_buf(buf.unfilled()).unwrap(); assert!(buf.filled().is_empty()); } #[test] fn test_buffered_reader_seek() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(2, io::Cursor::new(inner)); assert_eq!(reader.seek(SeekFrom::Start(3)).ok(), Some(3)); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..])); assert_eq!(reader.seek(SeekFrom::Current(0)).ok(), Some(3)); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..])); assert_eq!(reader.seek(SeekFrom::Current(1)).ok(), Some(4)); assert_eq!(reader.fill_buf().ok(), Some(&[1, 2][..])); reader.consume(1); assert_eq!(reader.seek(SeekFrom::Current(-2)).ok(), Some(3)); } #[test] fn test_buffered_reader_seek_relative() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(2, io::Cursor::new(inner)); assert!(reader.seek_relative(3).is_ok()); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..])); assert!(reader.seek_relative(0).is_ok()); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..])); assert!(reader.seek_relative(1).is_ok()); assert_eq!(reader.fill_buf().ok(), Some(&[1][..])); assert!(reader.seek_relative(-1).is_ok()); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..])); assert!(reader.seek_relative(2).is_ok()); assert_eq!(reader.fill_buf().ok(), Some(&[2, 3][..])); } #[test] fn test_buffered_reader_stream_position() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(2, io::Cursor::new(inner)); assert_eq!(reader.stream_position().ok(), Some(0)); assert_eq!(reader.seek(SeekFrom::Start(3)).ok(), Some(3)); assert_eq!(reader.stream_position().ok(), Some(3)); // relative seeking within the buffer and reading position should keep the buffer assert_eq!(reader.fill_buf().ok(), Some(&[0, 1][..])); assert!(reader.seek_relative(0).is_ok()); assert_eq!(reader.stream_position().ok(), Some(3)); assert_eq!(reader.buffer(), &[0, 1][..]); assert!(reader.seek_relative(1).is_ok()); assert_eq!(reader.stream_position().ok(), Some(4)); assert_eq!(reader.buffer(), &[1][..]); assert!(reader.seek_relative(-1).is_ok()); assert_eq!(reader.stream_position().ok(), Some(3)); assert_eq!(reader.buffer(), &[0, 1][..]); // relative seeking outside the buffer will discard it assert!(reader.seek_relative(2).is_ok()); assert_eq!(reader.stream_position().ok(), Some(5)); assert_eq!(reader.buffer(), &[][..]); } #[test] fn test_buffered_reader_stream_position_panic() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(4, io::Cursor::new(inner)); // cause internal buffer to be filled but read only partially let mut buffer = [0, 0]; assert!(reader.read_exact(&mut buffer).is_ok()); // rewinding the internal reader will cause buffer to loose sync let inner = reader.get_mut(); assert!(inner.seek(SeekFrom::Start(0)).is_ok()); // overflow when subtracting the remaining buffer size from current position let result = panic::catch_unwind(panic::AssertUnwindSafe(|| reader.stream_position().ok())); assert!(result.is_err()); } #[test] fn test_buffered_reader_invalidated_after_read() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(3, io::Cursor::new(inner)); assert_eq!(reader.fill_buf().ok(), Some(&[5, 6, 7][..])); reader.consume(3); let mut buffer = [0, 0, 0, 0, 0]; assert_eq!(reader.read(&mut buffer).ok(), Some(5)); assert_eq!(buffer, [0, 1, 2, 3, 4]); assert!(reader.seek_relative(-2).is_ok()); let mut buffer = [0, 0]; assert_eq!(reader.read(&mut buffer).ok(), Some(2)); assert_eq!(buffer, [3, 4]); } #[test] fn test_buffered_reader_invalidated_after_seek() { let inner: &[u8] = &[5, 6, 7, 0, 1, 2, 3, 4]; let mut reader = BufReader::with_capacity(3, io::Cursor::new(inner)); assert_eq!(reader.fill_buf().ok(), Some(&[5, 6, 7][..])); reader.consume(3); assert!(reader.seek(SeekFrom::Current(5)).is_ok()); assert!(reader.seek_relative(-2).is_ok()); let mut buffer = [0, 0]; assert_eq!(reader.read(&mut buffer).ok(), Some(2)); assert_eq!(buffer, [3, 4]); } #[test] fn test_buffered_reader_seek_underflow() { // gimmick reader that yields its position modulo 256 for each byte struct PositionReader { pos: u64, } impl Read for PositionReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { let len = buf.len(); for x in buf { *x = self.pos as u8; self.pos = self.pos.wrapping_add(1); } Ok(len) } } impl Seek for PositionReader { fn seek(&mut self, pos: SeekFrom) -> io::Result { match pos { SeekFrom::Start(n) => { self.pos = n; } SeekFrom::Current(n) => { self.pos = self.pos.wrapping_add(n as u64); } SeekFrom::End(n) => { self.pos = u64::MAX.wrapping_add(n as u64); } } Ok(self.pos) } } let mut reader = BufReader::with_capacity(5, PositionReader { pos: 0 }); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1, 2, 3, 4][..])); assert_eq!(reader.seek(SeekFrom::End(-5)).ok(), Some(u64::MAX - 5)); assert_eq!(reader.fill_buf().ok().map(|s| s.len()), Some(5)); // the following seek will require two underlying seeks let expected = 9223372036854775802; assert_eq!(reader.seek(SeekFrom::Current(i64::MIN)).ok(), Some(expected)); assert_eq!(reader.fill_buf().ok().map(|s| s.len()), Some(5)); // seeking to 0 should empty the buffer. assert_eq!(reader.seek(SeekFrom::Current(0)).ok(), Some(expected)); assert_eq!(reader.get_ref().pos, expected); } #[test] fn test_buffered_reader_seek_underflow_discard_buffer_between_seeks() { // gimmick reader that returns Err after first seek struct ErrAfterFirstSeekReader { first_seek: bool, } impl Read for ErrAfterFirstSeekReader { fn read(&mut self, buf: &mut [u8]) -> io::Result { for x in &mut *buf { *x = 0; } Ok(buf.len()) } } impl Seek for ErrAfterFirstSeekReader { fn seek(&mut self, _: SeekFrom) -> io::Result { if self.first_seek { self.first_seek = false; Ok(0) } else { Err(io::Error::new(io::ErrorKind::Other, "oh no!")) } } } let mut reader = BufReader::with_capacity(5, ErrAfterFirstSeekReader { first_seek: true }); assert_eq!(reader.fill_buf().ok(), Some(&[0, 0, 0, 0, 0][..])); // The following seek will require two underlying seeks. The first will // succeed but the second will fail. This should still invalidate the // buffer. assert!(reader.seek(SeekFrom::Current(i64::MIN)).is_err()); assert_eq!(reader.buffer().len(), 0); } #[test] fn test_buffered_reader_read_to_end_consumes_buffer() { let data: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7]; let mut reader = BufReader::with_capacity(3, data); let mut buf = Vec::new(); assert_eq!(reader.fill_buf().ok(), Some(&[0, 1, 2][..])); assert_eq!(reader.read_to_end(&mut buf).ok(), Some(8)); assert_eq!(&buf, &[0, 1, 2, 3, 4, 5, 6, 7]); assert!(reader.buffer().is_empty()); } #[test] fn test_buffered_reader_read_to_string_consumes_buffer() { let data: &[u8] = "deadbeef".as_bytes(); let mut reader = BufReader::with_capacity(3, data); let mut buf = String::new(); assert_eq!(reader.fill_buf().ok(), Some("dea".as_bytes())); assert_eq!(reader.read_to_string(&mut buf).ok(), Some(8)); assert_eq!(&buf, "deadbeef"); assert!(reader.buffer().is_empty()); } #[test] fn test_buffered_writer() { let inner = Vec::new(); let mut writer = BufWriter::with_capacity(2, inner); writer.write(&[0, 1]).unwrap(); assert_eq!(writer.buffer(), []); assert_eq!(*writer.get_ref(), [0, 1]); writer.write(&[2]).unwrap(); assert_eq!(writer.buffer(), [2]); assert_eq!(*writer.get_ref(), [0, 1]); writer.write(&[3]).unwrap(); assert_eq!(writer.buffer(), [2, 3]); assert_eq!(*writer.get_ref(), [0, 1]); writer.flush().unwrap(); assert_eq!(writer.buffer(), []); assert_eq!(*writer.get_ref(), [0, 1, 2, 3]); writer.write(&[4]).unwrap(); writer.write(&[5]).unwrap(); assert_eq!(writer.buffer(), [4, 5]); assert_eq!(*writer.get_ref(), [0, 1, 2, 3]); writer.write(&[6]).unwrap(); assert_eq!(writer.buffer(), [6]); assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5]); writer.write(&[7, 8]).unwrap(); assert_eq!(writer.buffer(), []); assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5, 6, 7, 8]); writer.write(&[9, 10, 11]).unwrap(); assert_eq!(writer.buffer(), []); assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]); writer.flush().unwrap(); assert_eq!(writer.buffer(), []); assert_eq!(*writer.get_ref(), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]); } #[test] fn test_buffered_writer_inner_flushes() { let mut w = BufWriter::with_capacity(3, Vec::new()); w.write(&[0, 1]).unwrap(); assert_eq!(*w.get_ref(), []); let w = w.into_inner().unwrap(); assert_eq!(w, [0, 1]); } #[test] fn test_buffered_writer_seek() { let mut w = BufWriter::with_capacity(3, io::Cursor::new(Vec::new())); w.write_all(&[0, 1, 2, 3, 4, 5]).unwrap(); w.write_all(&[6, 7]).unwrap(); assert_eq!(w.seek(SeekFrom::Current(0)).ok(), Some(8)); assert_eq!(&w.get_ref().get_ref()[..], &[0, 1, 2, 3, 4, 5, 6, 7][..]); assert_eq!(w.seek(SeekFrom::Start(2)).ok(), Some(2)); w.write_all(&[8, 9]).unwrap(); assert_eq!(&w.into_inner().unwrap().into_inner()[..], &[0, 1, 8, 9, 4, 5, 6, 7]); } #[test] fn test_read_until() { let inner: &[u8] = &[0, 1, 2, 1, 0]; let mut reader = BufReader::with_capacity(2, inner); let mut v = Vec::new(); reader.read_until(0, &mut v).unwrap(); assert_eq!(v, [0]); v.truncate(0); reader.read_until(2, &mut v).unwrap(); assert_eq!(v, [1, 2]); v.truncate(0); reader.read_until(1, &mut v).unwrap(); assert_eq!(v, [1]); v.truncate(0); reader.read_until(8, &mut v).unwrap(); assert_eq!(v, [0]); v.truncate(0); reader.read_until(9, &mut v).unwrap(); assert_eq!(v, []); } #[test] fn test_line_buffer() { let mut writer = LineWriter::new(Vec::new()); writer.write(&[0]).unwrap(); assert_eq!(*writer.get_ref(), []); writer.write(&[1]).unwrap(); assert_eq!(*writer.get_ref(), []); writer.flush().unwrap(); assert_eq!(*writer.get_ref(), [0, 1]); writer.write(&[0, b'\n', 1, b'\n', 2]).unwrap(); assert_eq!(*writer.get_ref(), [0, 1, 0, b'\n', 1, b'\n']); writer.flush().unwrap(); assert_eq!(*writer.get_ref(), [0, 1, 0, b'\n', 1, b'\n', 2]); writer.write(&[3, b'\n']).unwrap(); assert_eq!(*writer.get_ref(), [0, 1, 0, b'\n', 1, b'\n', 2, 3, b'\n']); } #[test] fn test_read_line() { let in_buf: &[u8] = b"a\nb\nc"; let mut reader = BufReader::with_capacity(2, in_buf); let mut s = String::new(); reader.read_line(&mut s).unwrap(); assert_eq!(s, "a\n"); s.truncate(0); reader.read_line(&mut s).unwrap(); assert_eq!(s, "b\n"); s.truncate(0); reader.read_line(&mut s).unwrap(); assert_eq!(s, "c"); s.truncate(0); reader.read_line(&mut s).unwrap(); assert_eq!(s, ""); } #[test] fn test_lines() { let in_buf: &[u8] = b"a\nb\nc"; let reader = BufReader::with_capacity(2, in_buf); let mut it = reader.lines(); assert_eq!(it.next().unwrap().unwrap(), "a".to_string()); assert_eq!(it.next().unwrap().unwrap(), "b".to_string()); assert_eq!(it.next().unwrap().unwrap(), "c".to_string()); assert!(it.next().is_none()); } #[test] fn test_short_reads() { let inner = ShortReader { lengths: vec![0, 1, 2, 0, 1, 0] }; let mut reader = BufReader::new(inner); let mut buf = [0, 0]; assert_eq!(reader.read(&mut buf).unwrap(), 0); assert_eq!(reader.read(&mut buf).unwrap(), 1); assert_eq!(reader.read(&mut buf).unwrap(), 2); assert_eq!(reader.read(&mut buf).unwrap(), 0); assert_eq!(reader.read(&mut buf).unwrap(), 1); assert_eq!(reader.read(&mut buf).unwrap(), 0); assert_eq!(reader.read(&mut buf).unwrap(), 0); } #[test] #[should_panic] fn dont_panic_in_drop_on_panicked_flush() { struct FailFlushWriter; impl Write for FailFlushWriter { fn write(&mut self, buf: &[u8]) -> io::Result { Ok(buf.len()) } fn flush(&mut self) -> io::Result<()> { Err(io::Error::last_os_error()) } } let writer = FailFlushWriter; let _writer = BufWriter::new(writer); // If writer panics *again* due to the flush error then the process will // abort. panic!(); } #[test] #[cfg_attr(target_os = "emscripten", ignore)] fn panic_in_write_doesnt_flush_in_drop() { static WRITES: AtomicUsize = AtomicUsize::new(0); struct PanicWriter; impl Write for PanicWriter { fn write(&mut self, _: &[u8]) -> io::Result { WRITES.fetch_add(1, Ordering::SeqCst); panic!(); } fn flush(&mut self) -> io::Result<()> { Ok(()) } } thread::spawn(|| { let mut writer = BufWriter::new(PanicWriter); let _ = writer.write(b"hello world"); let _ = writer.flush(); }) .join() .unwrap_err(); assert_eq!(WRITES.load(Ordering::SeqCst), 1); } #[bench] fn bench_buffered_reader(b: &mut test::Bencher) { b.iter(|| BufReader::new(io::empty())); } #[bench] fn bench_buffered_reader_small_reads(b: &mut test::Bencher) { let data = (0..u8::MAX).cycle().take(1024 * 4).collect::>(); b.iter(|| { let mut reader = BufReader::new(&data[..]); let mut buf = [0u8; 4]; for _ in 0..1024 { reader.read_exact(&mut buf).unwrap(); core::hint::black_box(&buf); } }); } #[bench] fn bench_buffered_writer(b: &mut test::Bencher) { b.iter(|| BufWriter::new(io::sink())); } /// A simple `Write` target, designed to be wrapped by `LineWriter` / /// `BufWriter` / etc, that can have its `write` & `flush` behavior /// configured #[derive(Default, Clone)] struct ProgrammableSink { // Writes append to this slice pub buffer: Vec, // If true, writes will always be an error pub always_write_error: bool, // If true, flushes will always be an error pub always_flush_error: bool, // If set, only up to this number of bytes will be written in a single // call to `write` pub accept_prefix: Option, // If set, counts down with each write, and writes return an error // when it hits 0 pub max_writes: Option, // If set, attempting to write when max_writes == Some(0) will be an // error; otherwise, it will return Ok(0). pub error_after_max_writes: bool, } impl Write for ProgrammableSink { fn write(&mut self, data: &[u8]) -> io::Result { if self.always_write_error { return Err(io::Error::new(io::ErrorKind::Other, "test - always_write_error")); } match self.max_writes { Some(0) if self.error_after_max_writes => { return Err(io::Error::new(io::ErrorKind::Other, "test - max_writes")); } Some(0) => return Ok(0), Some(ref mut count) => *count -= 1, None => {} } let len = match self.accept_prefix { None => data.len(), Some(prefix) => data.len().min(prefix), }; let data = &data[..len]; self.buffer.extend_from_slice(data); Ok(len) } fn flush(&mut self) -> io::Result<()> { if self.always_flush_error { Err(io::Error::new(io::ErrorKind::Other, "test - always_flush_error")) } else { Ok(()) } } } /// Previously the `LineWriter` could successfully write some bytes but /// then fail to report that it has done so. Additionally, an erroneous /// flush after a successful write was permanently ignored. /// /// Test that a line writer correctly reports the number of written bytes, /// and that it attempts to flush buffered lines from previous writes /// before processing new data /// /// Regression test for #37807 #[test] fn erroneous_flush_retried() { let writer = ProgrammableSink { // Only write up to 4 bytes at a time accept_prefix: Some(4), // Accept the first two writes, then error the others max_writes: Some(2), error_after_max_writes: true, ..Default::default() }; // This should write the first 4 bytes. The rest will be buffered, out // to the last newline. let mut writer = LineWriter::new(writer); assert_eq!(writer.write(b"a\nb\nc\nd\ne").unwrap(), 8); // This write should attempt to flush "c\nd\n", then buffer "e". No // errors should happen here because no further writes should be // attempted against `writer`. assert_eq!(writer.write(b"e").unwrap(), 1); assert_eq!(&writer.get_ref().buffer, b"a\nb\nc\nd\n"); } #[test] fn line_vectored() { let mut a = LineWriter::new(Vec::new()); assert_eq!( a.write_vectored(&[ IoSlice::new(&[]), IoSlice::new(b"\n"), IoSlice::new(&[]), IoSlice::new(b"a"), ]) .unwrap(), 2, ); assert_eq!(a.get_ref(), b"\n"); assert_eq!( a.write_vectored(&[ IoSlice::new(&[]), IoSlice::new(b"b"), IoSlice::new(&[]), IoSlice::new(b"a"), IoSlice::new(&[]), IoSlice::new(b"c"), ]) .unwrap(), 3, ); assert_eq!(a.get_ref(), b"\n"); a.flush().unwrap(); assert_eq!(a.get_ref(), b"\nabac"); assert_eq!(a.write_vectored(&[]).unwrap(), 0); assert_eq!( a.write_vectored(&[ IoSlice::new(&[]), IoSlice::new(&[]), IoSlice::new(&[]), IoSlice::new(&[]), ]) .unwrap(), 0, ); assert_eq!(a.write_vectored(&[IoSlice::new(b"a\nb"),]).unwrap(), 3); assert_eq!(a.get_ref(), b"\nabaca\nb"); } #[test] fn line_vectored_partial_and_errors() { use crate::collections::VecDeque; enum Call { Write { inputs: Vec<&'static [u8]>, output: io::Result }, Flush { output: io::Result<()> }, } #[derive(Default)] struct Writer { calls: VecDeque, } impl Write for Writer { fn write(&mut self, buf: &[u8]) -> io::Result { self.write_vectored(&[IoSlice::new(buf)]) } fn write_vectored(&mut self, buf: &[IoSlice<'_>]) -> io::Result { match self.calls.pop_front().expect("unexpected call to write") { Call::Write { inputs, output } => { assert_eq!(inputs, buf.iter().map(|b| &**b).collect::>()); output } Call::Flush { .. } => panic!("unexpected call to write; expected a flush"), } } fn is_write_vectored(&self) -> bool { true } fn flush(&mut self) -> io::Result<()> { match self.calls.pop_front().expect("Unexpected call to flush") { Call::Flush { output } => output, Call::Write { .. } => panic!("unexpected call to flush; expected a write"), } } } impl Drop for Writer { fn drop(&mut self) { if !thread::panicking() { assert_eq!(self.calls.len(), 0); } } } // partial writes keep going let mut a = LineWriter::new(Writer::default()); a.write_vectored(&[IoSlice::new(&[]), IoSlice::new(b"abc")]).unwrap(); a.get_mut().calls.push_back(Call::Write { inputs: vec![b"abc"], output: Ok(1) }); a.get_mut().calls.push_back(Call::Write { inputs: vec![b"bc"], output: Ok(2) }); a.get_mut().calls.push_back(Call::Write { inputs: vec![b"x", b"\n"], output: Ok(2) }); a.write_vectored(&[IoSlice::new(b"x"), IoSlice::new(b"\n")]).unwrap(); a.get_mut().calls.push_back(Call::Flush { output: Ok(()) }); a.flush().unwrap(); // erroneous writes stop and don't write more a.get_mut().calls.push_back(Call::Write { inputs: vec![b"x", b"\na"], output: Err(err()) }); a.get_mut().calls.push_back(Call::Flush { output: Ok(()) }); assert!(a.write_vectored(&[IoSlice::new(b"x"), IoSlice::new(b"\na")]).is_err()); a.flush().unwrap(); fn err() -> io::Error { io::Error::new(io::ErrorKind::Other, "x") } } /// Test that, in cases where vectored writing is not enabled, the /// LineWriter uses the normal `write` call, which more-correctly handles /// partial lines #[test] fn line_vectored_ignored() { let writer = ProgrammableSink::default(); let mut writer = LineWriter::new(writer); let content = [ IoSlice::new(&[]), IoSlice::new(b"Line 1\nLine"), IoSlice::new(b" 2\nLine 3\nL"), IoSlice::new(&[]), IoSlice::new(&[]), IoSlice::new(b"ine 4"), IoSlice::new(b"\nLine 5\n"), ]; let count = writer.write_vectored(&content).unwrap(); assert_eq!(count, 11); assert_eq!(&writer.get_ref().buffer, b"Line 1\n"); let count = writer.write_vectored(&content[2..]).unwrap(); assert_eq!(count, 11); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2\nLine 3\n"); let count = writer.write_vectored(&content[5..]).unwrap(); assert_eq!(count, 5); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2\nLine 3\n"); let count = writer.write_vectored(&content[6..]).unwrap(); assert_eq!(count, 8); assert_eq!( writer.get_ref().buffer.as_slice(), b"Line 1\nLine 2\nLine 3\nLine 4\nLine 5\n".as_ref() ); } /// Test that, given this input: /// /// Line 1\n /// Line 2\n /// Line 3\n /// Line 4 /// /// And given a result that only writes to midway through Line 2 /// /// That only up to the end of Line 3 is buffered /// /// This behavior is desirable because it prevents flushing partial lines #[test] fn partial_write_buffers_line() { let writer = ProgrammableSink { accept_prefix: Some(13), ..Default::default() }; let mut writer = LineWriter::new(writer); assert_eq!(writer.write(b"Line 1\nLine 2\nLine 3\nLine4").unwrap(), 21); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2"); assert_eq!(writer.write(b"Line 4").unwrap(), 6); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2\nLine 3\n"); } /// Test that, given this input: /// /// Line 1\n /// Line 2\n /// Line 3 /// /// And given that the full write of lines 1 and 2 was successful /// That data up to Line 3 is buffered #[test] fn partial_line_buffered_after_line_write() { let writer = ProgrammableSink::default(); let mut writer = LineWriter::new(writer); assert_eq!(writer.write(b"Line 1\nLine 2\nLine 3").unwrap(), 20); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2\n"); assert!(writer.flush().is_ok()); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2\nLine 3"); } /// Test that, given a partial line that exceeds the length of /// LineBuffer's buffer (that is, without a trailing newline), that that /// line is written to the inner writer #[test] fn long_line_flushed() { let writer = ProgrammableSink::default(); let mut writer = LineWriter::with_capacity(5, writer); assert_eq!(writer.write(b"0123456789").unwrap(), 10); assert_eq!(&writer.get_ref().buffer, b"0123456789"); } /// Test that, given a very long partial line *after* successfully /// flushing a complete line, that that line is buffered unconditionally, /// and no additional writes take place. This assures the property that /// `write` should make at-most-one attempt to write new data. #[test] fn line_long_tail_not_flushed() { let writer = ProgrammableSink::default(); let mut writer = LineWriter::with_capacity(5, writer); // Assert that Line 1\n is flushed, and 01234 is buffered assert_eq!(writer.write(b"Line 1\n0123456789").unwrap(), 12); assert_eq!(&writer.get_ref().buffer, b"Line 1\n"); // Because the buffer is full, this subsequent write will flush it assert_eq!(writer.write(b"5").unwrap(), 1); assert_eq!(&writer.get_ref().buffer, b"Line 1\n01234"); } /// Test that, if an attempt to pre-flush buffered data returns Ok(0), /// this is propagated as an error. #[test] fn line_buffer_write0_error() { let writer = ProgrammableSink { // Accept one write, then return Ok(0) on subsequent ones max_writes: Some(1), ..Default::default() }; let mut writer = LineWriter::new(writer); // This should write "Line 1\n" and buffer "Partial" assert_eq!(writer.write(b"Line 1\nPartial").unwrap(), 14); assert_eq!(&writer.get_ref().buffer, b"Line 1\n"); // This will attempt to flush "partial", which will return Ok(0), which // needs to be an error, because we've already informed the client // that we accepted the write. let err = writer.write(b" Line End\n").unwrap_err(); assert_eq!(err.kind(), ErrorKind::WriteZero); assert_eq!(&writer.get_ref().buffer, b"Line 1\n"); } /// Test that, if a write returns Ok(0) after a successful pre-flush, this /// is propagated as Ok(0) #[test] fn line_buffer_write0_normal() { let writer = ProgrammableSink { // Accept two writes, then return Ok(0) on subsequent ones max_writes: Some(2), ..Default::default() }; let mut writer = LineWriter::new(writer); // This should write "Line 1\n" and buffer "Partial" assert_eq!(writer.write(b"Line 1\nPartial").unwrap(), 14); assert_eq!(&writer.get_ref().buffer, b"Line 1\n"); // This will flush partial, which will succeed, but then return Ok(0) // when flushing " Line End\n" assert_eq!(writer.write(b" Line End\n").unwrap(), 0); assert_eq!(&writer.get_ref().buffer, b"Line 1\nPartial"); } /// LineWriter has a custom `write_all`; make sure it works correctly #[test] fn line_write_all() { let writer = ProgrammableSink { // Only write 5 bytes at a time accept_prefix: Some(5), ..Default::default() }; let mut writer = LineWriter::new(writer); writer.write_all(b"Line 1\nLine 2\nLine 3\nLine 4\nPartial").unwrap(); assert_eq!(&writer.get_ref().buffer, b"Line 1\nLine 2\nLine 3\nLine 4\n"); writer.write_all(b" Line 5\n").unwrap(); assert_eq!( writer.get_ref().buffer.as_slice(), b"Line 1\nLine 2\nLine 3\nLine 4\nPartial Line 5\n".as_ref(), ); } #[test] fn line_write_all_error() { let writer = ProgrammableSink { // Only accept up to 3 writes of up to 5 bytes each accept_prefix: Some(5), max_writes: Some(3), ..Default::default() }; let mut writer = LineWriter::new(writer); let res = writer.write_all(b"Line 1\nLine 2\nLine 3\nLine 4\nPartial"); assert!(res.is_err()); // An error from write_all leaves everything in an indeterminate state, // so there's nothing else to test here } /// Under certain circumstances, the old implementation of LineWriter /// would try to buffer "to the last newline" but be forced to buffer /// less than that, leading to inappropriate partial line writes. /// Regression test for that issue. #[test] fn partial_multiline_buffering() { let writer = ProgrammableSink { // Write only up to 5 bytes at a time accept_prefix: Some(5), ..Default::default() }; let mut writer = LineWriter::with_capacity(10, writer); let content = b"AAAAABBBBB\nCCCCDDDDDD\nEEE"; // When content is written, LineWriter will try to write blocks A, B, // C, and D. Only block A will succeed. Under the old behavior, LineWriter // would then try to buffer B, C and D, but because its capacity is 10, // it will only be able to buffer B and C. We don't want to buffer // partial lines concurrent with whole lines, so the correct behavior // is to buffer only block B (out to the newline) assert_eq!(writer.write(content).unwrap(), 11); assert_eq!(writer.get_ref().buffer, *b"AAAAA"); writer.flush().unwrap(); assert_eq!(writer.get_ref().buffer, *b"AAAAABBBBB\n"); } /// Same as test_partial_multiline_buffering, but in the event NO full lines /// fit in the buffer, just buffer as much as possible #[test] fn partial_multiline_buffering_without_full_line() { let writer = ProgrammableSink { // Write only up to 5 bytes at a time accept_prefix: Some(5), ..Default::default() }; let mut writer = LineWriter::with_capacity(5, writer); let content = b"AAAAABBBBBBBBBB\nCCCCC\nDDDDD"; // When content is written, LineWriter will try to write blocks A, B, // and C. Only block A will succeed. Under the old behavior, LineWriter // would then try to buffer B and C, but because its capacity is 5, // it will only be able to buffer part of B. Because it's not possible // for it to buffer any complete lines, it should buffer as much of B as // possible assert_eq!(writer.write(content).unwrap(), 10); assert_eq!(writer.get_ref().buffer, *b"AAAAA"); writer.flush().unwrap(); assert_eq!(writer.get_ref().buffer, *b"AAAAABBBBB"); } #[derive(Debug, Clone, PartialEq, Eq)] enum RecordedEvent { Write(String), Flush, } #[derive(Debug, Clone, Default)] struct WriteRecorder { pub events: Vec, } impl Write for WriteRecorder { fn write(&mut self, buf: &[u8]) -> io::Result { use crate::str::from_utf8; self.events.push(RecordedEvent::Write(from_utf8(buf).unwrap().to_string())); Ok(buf.len()) } fn flush(&mut self) -> io::Result<()> { self.events.push(RecordedEvent::Flush); Ok(()) } } /// Test that a normal, formatted writeln only results in a single write /// call to the underlying writer. A naive implementation of /// LineWriter::write_all results in two writes: one of the buffered data, /// and another of the final substring in the formatted set #[test] fn single_formatted_write() { let writer = WriteRecorder::default(); let mut writer = LineWriter::new(writer); // Under a naive implementation of LineWriter, this will result in two // writes: "hello, world" and "!\n", because write() has to flush the // buffer before attempting to write the last "!\n". write_all shouldn't // have this limitation. writeln!(&mut writer, "{}, {}!", "hello", "world").unwrap(); assert_eq!(writer.get_ref().events, [RecordedEvent::Write("hello, world!\n".to_string())]); } #[test] fn bufreader_full_initialize() { struct OneByteReader; impl Read for OneByteReader { fn read(&mut self, buf: &mut [u8]) -> crate::io::Result { if buf.len() > 0 { buf[0] = 0; Ok(1) } else { Ok(0) } } } let mut reader = BufReader::new(OneByteReader); // Nothing is initialized yet. assert_eq!(reader.initialized(), 0); let buf = reader.fill_buf().unwrap(); // We read one byte... assert_eq!(buf.len(), 1); // But we initialized the whole buffer! assert_eq!(reader.initialized(), reader.capacity()); }