#[cfg(test)] mod tests; use crate::io::prelude::*; use crate::alloc::Allocator; use crate::cmp; use crate::io::{self, ErrorKind, IoSlice, IoSliceMut, ReadBuf, SeekFrom}; /// A `Cursor` wraps an in-memory buffer and provides it with a /// [`Seek`] implementation. /// /// `Cursor`s are used with in-memory buffers, anything implementing /// [AsRef]<\[u8]>, to allow them to implement [`Read`] and/or [`Write`], /// allowing these buffers to be used anywhere you might use a reader or writer /// that does actual I/O. /// /// The standard library implements some I/O traits on various types which /// are commonly used as a buffer, like Cursor<[Vec]\> and /// Cursor<[&\[u8\]][bytes]>. /// /// # Examples /// /// We may want to write bytes to a [`File`] in our production /// code, but use an in-memory buffer in our tests. We can do this with /// `Cursor`: /// /// [bytes]: crate::slice "slice" /// [`File`]: crate::fs::File /// /// ```no_run /// use std::io::prelude::*; /// use std::io::{self, SeekFrom}; /// use std::fs::File; /// /// // a library function we've written /// fn write_ten_bytes_at_end(writer: &mut W) -> io::Result<()> { /// writer.seek(SeekFrom::End(-10))?; /// /// for i in 0..10 { /// writer.write(&[i])?; /// } /// /// // all went well /// Ok(()) /// } /// /// # fn foo() -> io::Result<()> { /// // Here's some code that uses this library function. /// // /// // We might want to use a BufReader here for efficiency, but let's /// // keep this example focused. /// let mut file = File::create("foo.txt")?; /// /// write_ten_bytes_at_end(&mut file)?; /// # Ok(()) /// # } /// /// // now let's write a test /// #[test] /// fn test_writes_bytes() { /// // setting up a real File is much slower than an in-memory buffer, /// // let's use a cursor instead /// use std::io::Cursor; /// let mut buff = Cursor::new(vec![0; 15]); /// /// write_ten_bytes_at_end(&mut buff).unwrap(); /// /// assert_eq!(&buff.get_ref()[5..15], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug, Default, Eq, PartialEq)] pub struct Cursor { inner: T, pos: u64, } impl Cursor { /// Creates a new cursor wrapping the provided underlying in-memory buffer. /// /// Cursor initial position is `0` even if underlying buffer (e.g., [`Vec`]) /// is not empty. So writing to cursor starts with overwriting [`Vec`] /// content, not with appending to it. /// /// # Examples /// /// ``` /// use std::io::Cursor; /// /// let buff = Cursor::new(Vec::new()); /// # fn force_inference(_: &Cursor>) {} /// # force_inference(&buff); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_io_structs", issue = "78812")] pub const fn new(inner: T) -> Cursor { Cursor { pos: 0, inner } } /// Consumes this cursor, returning the underlying value. /// /// # Examples /// /// ``` /// use std::io::Cursor; /// /// let buff = Cursor::new(Vec::new()); /// # fn force_inference(_: &Cursor>) {} /// # force_inference(&buff); /// /// let vec = buff.into_inner(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn into_inner(self) -> T { self.inner } /// Gets a reference to the underlying value in this cursor. /// /// # Examples /// /// ``` /// use std::io::Cursor; /// /// let buff = Cursor::new(Vec::new()); /// # fn force_inference(_: &Cursor>) {} /// # force_inference(&buff); /// /// let reference = buff.get_ref(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_io_structs", issue = "78812")] pub const fn get_ref(&self) -> &T { &self.inner } /// Gets a mutable reference to the underlying value in this cursor. /// /// Care should be taken to avoid modifying the internal I/O state of the /// underlying value as it may corrupt this cursor's position. /// /// # Examples /// /// ``` /// use std::io::Cursor; /// /// let mut buff = Cursor::new(Vec::new()); /// # fn force_inference(_: &Cursor>) {} /// # force_inference(&buff); /// /// let reference = buff.get_mut(); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn get_mut(&mut self) -> &mut T { &mut self.inner } /// Returns the current position of this cursor. /// /// # Examples /// /// ``` /// use std::io::Cursor; /// use std::io::prelude::*; /// use std::io::SeekFrom; /// /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]); /// /// assert_eq!(buff.position(), 0); /// /// buff.seek(SeekFrom::Current(2)).unwrap(); /// assert_eq!(buff.position(), 2); /// /// buff.seek(SeekFrom::Current(-1)).unwrap(); /// assert_eq!(buff.position(), 1); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_io_structs", issue = "78812")] pub const fn position(&self) -> u64 { self.pos } /// Sets the position of this cursor. /// /// # Examples /// /// ``` /// use std::io::Cursor; /// /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]); /// /// assert_eq!(buff.position(), 0); /// /// buff.set_position(2); /// assert_eq!(buff.position(), 2); /// /// buff.set_position(4); /// assert_eq!(buff.position(), 4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn set_position(&mut self, pos: u64) { self.pos = pos; } } impl Cursor where T: AsRef<[u8]>, { /// Returns the remaining slice. /// /// # Examples /// /// ``` /// #![feature(cursor_remaining)] /// use std::io::Cursor; /// /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]); /// /// assert_eq!(buff.remaining_slice(), &[1, 2, 3, 4, 5]); /// /// buff.set_position(2); /// assert_eq!(buff.remaining_slice(), &[3, 4, 5]); /// /// buff.set_position(4); /// assert_eq!(buff.remaining_slice(), &[5]); /// /// buff.set_position(6); /// assert_eq!(buff.remaining_slice(), &[]); /// ``` #[unstable(feature = "cursor_remaining", issue = "86369")] pub fn remaining_slice(&self) -> &[u8] { let len = self.pos.min(self.inner.as_ref().len() as u64); &self.inner.as_ref()[(len as usize)..] } /// Returns `true` if the remaining slice is empty. /// /// # Examples /// /// ``` /// #![feature(cursor_remaining)] /// use std::io::Cursor; /// /// let mut buff = Cursor::new(vec![1, 2, 3, 4, 5]); /// /// buff.set_position(2); /// assert!(!buff.is_empty()); /// /// buff.set_position(5); /// assert!(buff.is_empty()); /// /// buff.set_position(10); /// assert!(buff.is_empty()); /// ``` #[unstable(feature = "cursor_remaining", issue = "86369")] pub fn is_empty(&self) -> bool { self.pos >= self.inner.as_ref().len() as u64 } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Cursor where T: Clone, { #[inline] fn clone(&self) -> Self { Cursor { inner: self.inner.clone(), pos: self.pos } } #[inline] fn clone_from(&mut self, other: &Self) { self.inner.clone_from(&other.inner); self.pos = other.pos; } } #[stable(feature = "rust1", since = "1.0.0")] impl io::Seek for Cursor where T: AsRef<[u8]>, { fn seek(&mut self, style: SeekFrom) -> io::Result { let (base_pos, offset) = match style { SeekFrom::Start(n) => { self.pos = n; return Ok(n); } SeekFrom::End(n) => (self.inner.as_ref().len() as u64, n), SeekFrom::Current(n) => (self.pos, n), }; match base_pos.checked_add_signed(offset) { Some(n) => { self.pos = n; Ok(self.pos) } None => Err(io::const_io_error!( ErrorKind::InvalidInput, "invalid seek to a negative or overflowing position", )), } } fn stream_len(&mut self) -> io::Result { Ok(self.inner.as_ref().len() as u64) } fn stream_position(&mut self) -> io::Result { Ok(self.pos) } } #[stable(feature = "rust1", since = "1.0.0")] impl Read for Cursor where T: AsRef<[u8]>, { fn read(&mut self, buf: &mut [u8]) -> io::Result { let n = Read::read(&mut self.remaining_slice(), buf)?; self.pos += n as u64; Ok(n) } fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> io::Result<()> { let prev_filled = buf.filled_len(); Read::read_buf(&mut self.fill_buf()?, buf)?; self.pos += (buf.filled_len() - prev_filled) as u64; Ok(()) } fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result { let mut nread = 0; for buf in bufs { let n = self.read(buf)?; nread += n; if n < buf.len() { break; } } Ok(nread) } fn is_read_vectored(&self) -> bool { true } fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> { let n = buf.len(); Read::read_exact(&mut self.remaining_slice(), buf)?; self.pos += n as u64; Ok(()) } } #[stable(feature = "rust1", since = "1.0.0")] impl BufRead for Cursor where T: AsRef<[u8]>, { fn fill_buf(&mut self) -> io::Result<&[u8]> { Ok(self.remaining_slice()) } fn consume(&mut self, amt: usize) { self.pos += amt as u64; } } // Non-resizing write implementation #[inline] fn slice_write(pos_mut: &mut u64, slice: &mut [u8], buf: &[u8]) -> io::Result { let pos = cmp::min(*pos_mut, slice.len() as u64); let amt = (&mut slice[(pos as usize)..]).write(buf)?; *pos_mut += amt as u64; Ok(amt) } #[inline] fn slice_write_vectored( pos_mut: &mut u64, slice: &mut [u8], bufs: &[IoSlice<'_>], ) -> io::Result { let mut nwritten = 0; for buf in bufs { let n = slice_write(pos_mut, slice, buf)?; nwritten += n; if n < buf.len() { break; } } Ok(nwritten) } /// Reserves the required space, and pads the vec with 0s if necessary. fn reserve_and_pad( pos_mut: &mut u64, vec: &mut Vec, buf_len: usize, ) -> io::Result { let pos: usize = (*pos_mut).try_into().map_err(|_| { io::const_io_error!( ErrorKind::InvalidInput, "cursor position exceeds maximum possible vector length", ) })?; // For safety reasons, we don't want these numbers to overflow // otherwise our allocation won't be enough let desired_cap = pos.saturating_add(buf_len); if desired_cap > vec.capacity() { // We want our vec's total capacity // to have room for (pos+buf_len) bytes. Reserve allocates // based on additional elements from the length, so we need to // reserve the difference vec.reserve(desired_cap - vec.len()); } // Pad if pos is above the current len. if pos > vec.len() { let diff = pos - vec.len(); // Unfortunately, `resize()` would suffice but the optimiser does not // realise the `reserve` it does can be eliminated. So we do it manually // to eliminate that extra branch let spare = vec.spare_capacity_mut(); debug_assert!(spare.len() >= diff); // Safety: we have allocated enough capacity for this. // And we are only writing, not reading unsafe { spare.get_unchecked_mut(..diff).fill(core::mem::MaybeUninit::new(0)); vec.set_len(pos); } } Ok(pos) } /// Writes the slice to the vec without allocating /// # Safety: vec must have buf.len() spare capacity unsafe fn vec_write_unchecked(pos: usize, vec: &mut Vec, buf: &[u8]) -> usize where A: Allocator, { debug_assert!(vec.capacity() >= pos + buf.len()); vec.as_mut_ptr().add(pos).copy_from(buf.as_ptr(), buf.len()); pos + buf.len() } /// Resizing write implementation for [`Cursor`] /// /// Cursor is allowed to have a pre-allocated and initialised /// vector body, but with a position of 0. This means the [`Write`] /// will overwrite the contents of the vec. /// /// This also allows for the vec body to be empty, but with a position of N. /// This means that [`Write`] will pad the vec with 0 initially, /// before writing anything from that point fn vec_write(pos_mut: &mut u64, vec: &mut Vec, buf: &[u8]) -> io::Result where A: Allocator, { let buf_len = buf.len(); let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?; // Write the buf then progress the vec forward if necessary // Safety: we have ensured that the capacity is available // and that all bytes get written up to pos unsafe { pos = vec_write_unchecked(pos, vec, buf); if pos > vec.len() { vec.set_len(pos); } }; // Bump us forward *pos_mut += buf_len as u64; Ok(buf_len) } /// Resizing write_vectored implementation for [`Cursor`] /// /// Cursor is allowed to have a pre-allocated and initialised /// vector body, but with a position of 0. This means the [`Write`] /// will overwrite the contents of the vec. /// /// This also allows for the vec body to be empty, but with a position of N. /// This means that [`Write`] will pad the vec with 0 initially, /// before writing anything from that point fn vec_write_vectored( pos_mut: &mut u64, vec: &mut Vec, bufs: &[IoSlice<'_>], ) -> io::Result where A: Allocator, { // For safety reasons, we don't want this sum to overflow ever. // If this saturates, the reserve should panic to avoid any unsound writing. let buf_len = bufs.iter().fold(0usize, |a, b| a.saturating_add(b.len())); let mut pos = reserve_and_pad(pos_mut, vec, buf_len)?; // Write the buf then progress the vec forward if necessary // Safety: we have ensured that the capacity is available // and that all bytes get written up to the last pos unsafe { for buf in bufs { pos = vec_write_unchecked(pos, vec, buf); } if pos > vec.len() { vec.set_len(pos); } } // Bump us forward *pos_mut += buf_len as u64; Ok(buf_len) } #[stable(feature = "rust1", since = "1.0.0")] impl Write for Cursor<&mut [u8]> { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { slice_write(&mut self.pos, self.inner, buf) } #[inline] fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result { slice_write_vectored(&mut self.pos, self.inner, bufs) } #[inline] fn is_write_vectored(&self) -> bool { true } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[stable(feature = "cursor_mut_vec", since = "1.25.0")] impl Write for Cursor<&mut Vec> where A: Allocator, { fn write(&mut self, buf: &[u8]) -> io::Result { vec_write(&mut self.pos, self.inner, buf) } fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result { vec_write_vectored(&mut self.pos, self.inner, bufs) } #[inline] fn is_write_vectored(&self) -> bool { true } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[stable(feature = "rust1", since = "1.0.0")] impl Write for Cursor> where A: Allocator, { fn write(&mut self, buf: &[u8]) -> io::Result { vec_write(&mut self.pos, &mut self.inner, buf) } fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result { vec_write_vectored(&mut self.pos, &mut self.inner, bufs) } #[inline] fn is_write_vectored(&self) -> bool { true } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[stable(feature = "cursor_box_slice", since = "1.5.0")] impl Write for Cursor> where A: Allocator, { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { slice_write(&mut self.pos, &mut self.inner, buf) } #[inline] fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result { slice_write_vectored(&mut self.pos, &mut self.inner, bufs) } #[inline] fn is_write_vectored(&self) -> bool { true } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } } #[stable(feature = "cursor_array", since = "1.61.0")] impl Write for Cursor<[u8; N]> { #[inline] fn write(&mut self, buf: &[u8]) -> io::Result { slice_write(&mut self.pos, &mut self.inner, buf) } #[inline] fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result { slice_write_vectored(&mut self.pos, &mut self.inner, bufs) } #[inline] fn is_write_vectored(&self) -> bool { true } #[inline] fn flush(&mut self) -> io::Result<()> { Ok(()) } }