// Tests for this module #[cfg(all(test, not(target_os = "emscripten")))] mod tests; use crate::cmp::Ordering; use crate::fmt::{self, Write as FmtWrite}; use crate::io::Write as IoWrite; use crate::mem::transmute; use crate::sys::net::netc as c; use crate::sys_common::{FromInner, IntoInner}; /// An IP address, either IPv4 or IPv6. /// /// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their /// respective documentation for more details. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)); /// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); /// /// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4)); /// assert_eq!("::1".parse(), Ok(localhost_v6)); /// /// assert_eq!(localhost_v4.is_ipv6(), false); /// assert_eq!(localhost_v4.is_ipv4(), true); /// ``` #[stable(feature = "ip_addr", since = "1.7.0")] #[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)] pub enum IpAddr { /// An IPv4 address. #[stable(feature = "ip_addr", since = "1.7.0")] V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr), /// An IPv6 address. #[stable(feature = "ip_addr", since = "1.7.0")] V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr), } /// An IPv4 address. /// /// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791]. /// They are usually represented as four octets. /// /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. /// /// [IETF RFC 791]: https://tools.ietf.org/html/rfc791 /// /// # Textual representation /// /// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal /// notation, divided by `.` (this is called "dot-decimal notation"). /// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which /// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943]. /// /// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1 /// [`FromStr`]: crate::str::FromStr /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let localhost = Ipv4Addr::new(127, 0, 0, 1); /// assert_eq!("127.0.0.1".parse(), Ok(localhost)); /// assert_eq!(localhost.is_loopback(), true); /// assert!("012.004.002.000".parse::().is_err()); // all octets are in octal /// assert!("0000000.0.0.0".parse::().is_err()); // first octet is a zero in octal /// assert!("0xcb.0x0.0x71.0x00".parse::().is_err()); // all octets are in hex /// ``` #[derive(Copy, Clone, PartialEq, Eq, Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Ipv4Addr { octets: [u8; 4], } /// An IPv6 address. /// /// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291]. /// They are usually represented as eight 16-bit segments. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// /// # Embedding IPv4 Addresses /// /// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses. /// /// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined: /// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated. /// /// Both types of addresses are not assigned any special meaning by this implementation, /// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`, /// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is. /// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address. /// /// ### IPv4-Compatible IPv6 Addresses /// /// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated. /// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows: /// /// ```text /// | 80 bits | 16 | 32 bits | /// +--------------------------------------+--------------------------+ /// |0000..............................0000|0000| IPv4 address | /// +--------------------------------------+----+---------------------+ /// ``` /// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`. /// /// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`]. /// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address. /// /// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1 /// /// ### IPv4-Mapped IPv6 Addresses /// /// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2]. /// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows: /// /// ```text /// | 80 bits | 16 | 32 bits | /// +--------------------------------------+--------------------------+ /// |0000..............................0000|FFFF| IPv4 address | /// +--------------------------------------+----+---------------------+ /// ``` /// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`. /// /// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`]. /// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address. /// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this. /// /// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2 /// /// # Textual representation /// /// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent /// an IPv6 address in text, but in general, each segments is written in hexadecimal /// notation, and segments are separated by `:`. For more information, see /// [IETF RFC 5952]. /// /// [`FromStr`]: crate::str::FromStr /// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952 /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); /// assert_eq!("::1".parse(), Ok(localhost)); /// assert_eq!(localhost.is_loopback(), true); /// ``` #[derive(Copy, Clone, PartialEq, Eq, Hash)] #[stable(feature = "rust1", since = "1.0.0")] pub struct Ipv6Addr { octets: [u8; 16], } /// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2]. /// /// # Stability Guarantees /// /// Not all possible values for a multicast scope have been assigned. /// Future RFCs may introduce new scopes, which will be added as variants to this enum; /// because of this the enum is marked as `#[non_exhaustive]`. /// /// # Examples /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// use std::net::Ipv6MulticastScope::*; /// /// // An IPv6 multicast address with global scope (`ff0e::`). /// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0); /// /// // Will print "Global scope". /// match address.multicast_scope() { /// Some(InterfaceLocal) => println!("Interface-Local scope"), /// Some(LinkLocal) => println!("Link-Local scope"), /// Some(RealmLocal) => println!("Realm-Local scope"), /// Some(AdminLocal) => println!("Admin-Local scope"), /// Some(SiteLocal) => println!("Site-Local scope"), /// Some(OrganizationLocal) => println!("Organization-Local scope"), /// Some(Global) => println!("Global scope"), /// Some(_) => println!("Unknown scope"), /// None => println!("Not a multicast address!") /// } /// /// ``` /// /// [IPv6 multicast address]: Ipv6Addr /// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2 #[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)] #[unstable(feature = "ip", issue = "27709")] #[non_exhaustive] pub enum Ipv6MulticastScope { /// Interface-Local scope. InterfaceLocal, /// Link-Local scope. LinkLocal, /// Realm-Local scope. RealmLocal, /// Admin-Local scope. AdminLocal, /// Site-Local scope. SiteLocal, /// Organization-Local scope. OrganizationLocal, /// Global scope. Global, } impl IpAddr { /// Returns [`true`] for the special 'unspecified' address. /// /// See the documentation for [`Ipv4Addr::is_unspecified()`] and /// [`Ipv6Addr::is_unspecified()`] for more details. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "ip_shared", since = "1.12.0")] #[must_use] #[inline] pub const fn is_unspecified(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_unspecified(), IpAddr::V6(ip) => ip.is_unspecified(), } } /// Returns [`true`] if this is a loopback address. /// /// See the documentation for [`Ipv4Addr::is_loopback()`] and /// [`Ipv6Addr::is_loopback()`] for more details. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "ip_shared", since = "1.12.0")] #[must_use] #[inline] pub const fn is_loopback(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_loopback(), IpAddr::V6(ip) => ip.is_loopback(), } } /// Returns [`true`] if the address appears to be globally routable. /// /// See the documentation for [`Ipv4Addr::is_global()`] and /// [`Ipv6Addr::is_global()`] for more details. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true); /// ``` #[rustc_const_unstable(feature = "const_ip", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_global(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_global(), IpAddr::V6(ip) => ip.is_global(), } } /// Returns [`true`] if this is a multicast address. /// /// See the documentation for [`Ipv4Addr::is_multicast()`] and /// [`Ipv6Addr::is_multicast()`] for more details. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "ip_shared", since = "1.12.0")] #[must_use] #[inline] pub const fn is_multicast(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_multicast(), IpAddr::V6(ip) => ip.is_multicast(), } } /// Returns [`true`] if this address is in a range designated for documentation. /// /// See the documentation for [`Ipv4Addr::is_documentation()`] and /// [`Ipv6Addr::is_documentation()`] for more details. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true); /// assert_eq!( /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(), /// true /// ); /// ``` #[rustc_const_unstable(feature = "const_ip", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_documentation(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_documentation(), IpAddr::V6(ip) => ip.is_documentation(), } } /// Returns [`true`] if this address is in a range designated for benchmarking. /// /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and /// [`Ipv6Addr::is_benchmarking()`] for more details. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true); /// ``` #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_benchmarking(&self) -> bool { match self { IpAddr::V4(ip) => ip.is_benchmarking(), IpAddr::V6(ip) => ip.is_benchmarking(), } } /// Returns [`true`] if this address is an [`IPv4` address], and [`false`] /// otherwise. /// /// [`IPv4` address]: IpAddr::V4 /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "ipaddr_checker", since = "1.16.0")] #[must_use] #[inline] pub const fn is_ipv4(&self) -> bool { matches!(self, IpAddr::V4(_)) } /// Returns [`true`] if this address is an [`IPv6` address], and [`false`] /// otherwise. /// /// [`IPv6` address]: IpAddr::V6 /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "ipaddr_checker", since = "1.16.0")] #[must_use] #[inline] pub const fn is_ipv6(&self) -> bool { matches!(self, IpAddr::V6(_)) } /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6 addresses, otherwise it /// return `self` as-is. /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false); /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true); /// ``` #[inline] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[rustc_const_unstable(feature = "const_ip", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] pub const fn to_canonical(&self) -> IpAddr { match self { &v4 @ IpAddr::V4(_) => v4, IpAddr::V6(v6) => v6.to_canonical(), } } } impl Ipv4Addr { /// Creates a new IPv4 address from four eight-bit octets. /// /// The result will represent the IP address `a`.`b`.`c`.`d`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::new(127, 0, 0, 1); /// ``` #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use] #[inline] pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr { Ipv4Addr { octets: [a, b, c, d] } } /// An IPv4 address with the address pointing to localhost: `127.0.0.1` /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::LOCALHOST; /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1); /// An IPv4 address representing an unspecified address: `0.0.0.0` /// /// This corresponds to the constant `INADDR_ANY` in other languages. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::UNSPECIFIED; /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0)); /// ``` #[doc(alias = "INADDR_ANY")] #[stable(feature = "ip_constructors", since = "1.30.0")] pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0); /// An IPv4 address representing the broadcast address: `255.255.255.255` /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::BROADCAST; /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255); /// Returns the four eight-bit integers that make up this address. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::new(127, 0, 0, 1); /// assert_eq!(addr.octets(), [127, 0, 0, 1]); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use] #[inline] pub const fn octets(&self) -> [u8; 4] { self.octets } /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`). /// /// This property is defined in _UNIX Network Programming, Second Edition_, /// W. Richard Stevens, p. 891; see also [ip7]. /// /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true); /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false); /// ``` #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")] #[stable(feature = "ip_shared", since = "1.12.0")] #[must_use] #[inline] pub const fn is_unspecified(&self) -> bool { u32::from_be_bytes(self.octets) == 0 } /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`). /// /// This property is defined by [IETF RFC 1122]. /// /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true); /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_loopback(&self) -> bool { self.octets()[0] == 127 } /// Returns [`true`] if this is a private address. /// /// The private address ranges are defined in [IETF RFC 1918] and include: /// /// - `10.0.0.0/8` /// - `172.16.0.0/12` /// - `192.168.0.0/16` /// /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true); /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true); /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true); /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true); /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false); /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true); /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_private(&self) -> bool { match self.octets() { [10, ..] => true, [172, b, ..] if b >= 16 && b <= 31 => true, [192, 168, ..] => true, _ => false, } } /// Returns [`true`] if the address is link-local (`169.254.0.0/16`). /// /// This property is defined by [IETF RFC 3927]. /// /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true); /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true); /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_link_local(&self) -> bool { matches!(self.octets(), [169, 254, ..]) } /// Returns [`true`] if the address appears to be globally routable. /// See [iana-ipv4-special-registry][ipv4-sr]. /// /// The following return [`false`]: /// /// - private addresses (see [`Ipv4Addr::is_private()`]) /// - the loopback address (see [`Ipv4Addr::is_loopback()`]) /// - the link-local address (see [`Ipv4Addr::is_link_local()`]) /// - the broadcast address (see [`Ipv4Addr::is_broadcast()`]) /// - addresses used for documentation (see [`Ipv4Addr::is_documentation()`]) /// - the unspecified address (see [`Ipv4Addr::is_unspecified()`]), and the whole /// `0.0.0.0/8` block /// - addresses reserved for future protocols, except /// `192.0.0.9/32` and `192.0.0.10/32` which are globally routable /// - addresses reserved for future use (see [`Ipv4Addr::is_reserved()`] /// - addresses reserved for networking devices benchmarking (see /// [`Ipv4Addr::is_benchmarking()`]) /// /// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv4Addr; /// /// // private addresses are not global /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false); /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false); /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false); /// /// // the 0.0.0.0/8 block is not global /// assert_eq!(Ipv4Addr::new(0, 1, 2, 3).is_global(), false); /// // in particular, the unspecified address is not global /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false); /// /// // the loopback address is not global /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_global(), false); /// /// // link local addresses are not global /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false); /// /// // the broadcast address is not global /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_global(), false); /// /// // the address space designated for documentation is not global /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false); /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false); /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false); /// /// // shared addresses are not global /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false); /// /// // addresses reserved for protocol assignment are not global /// assert_eq!(Ipv4Addr::new(192, 0, 0, 0).is_global(), false); /// assert_eq!(Ipv4Addr::new(192, 0, 0, 255).is_global(), false); /// /// // addresses reserved for future use are not global /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false); /// /// // addresses reserved for network devices benchmarking are not global /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false); /// /// // All the other addresses are global /// assert_eq!(Ipv4Addr::new(1, 1, 1, 1).is_global(), true); /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_global(&self) -> bool { // check if this address is 192.0.0.9 or 192.0.0.10. These addresses are the only two // globally routable addresses in the 192.0.0.0/24 range. if u32::from_be_bytes(self.octets()) == 0xc0000009 || u32::from_be_bytes(self.octets()) == 0xc000000a { return true; } !self.is_private() && !self.is_loopback() && !self.is_link_local() && !self.is_broadcast() && !self.is_documentation() && !self.is_shared() // addresses reserved for future protocols (`192.0.0.0/24`) && !(self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0) && !self.is_reserved() && !self.is_benchmarking() // Make sure the address is not in 0.0.0.0/8 && self.octets()[0] != 0 } /// Returns [`true`] if this address is part of the Shared Address Space defined in /// [IETF RFC 6598] (`100.64.0.0/10`). /// /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598 /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true); /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true); /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false); /// ``` #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_shared(&self) -> bool { self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000) } /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0` /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`. /// /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544 /// [errata 423]: https://www.rfc-editor.org/errata/eid423 /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false); /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true); /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true); /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false); /// ``` #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_benchmarking(&self) -> bool { self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18 } /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112] /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since /// it is obviously not reserved for future use. /// /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112 /// /// # Warning /// /// As IANA assigns new addresses, this method will be /// updated. This may result in non-reserved addresses being /// treated as reserved in code that relies on an outdated version /// of this method. /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true); /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true); /// /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false); /// // The broadcast address is not considered as reserved for future use by this implementation /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false); /// ``` #[rustc_const_unstable(feature = "const_ipv4", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_reserved(&self) -> bool { self.octets()[0] & 240 == 240 && !self.is_broadcast() } /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`). /// /// Multicast addresses have a most significant octet between `224` and `239`, /// and is defined by [IETF RFC 5771]. /// /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true); /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true); /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_multicast(&self) -> bool { self.octets()[0] >= 224 && self.octets()[0] <= 239 } /// Returns [`true`] if this is a broadcast address (`255.255.255.255`). /// /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919]. /// /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true); /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_broadcast(&self) -> bool { u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets()) } /// Returns [`true`] if this address is in a range designated for documentation. /// /// This is defined in [IETF RFC 5737]: /// /// - `192.0.2.0/24` (TEST-NET-1) /// - `198.51.100.0/24` (TEST-NET-2) /// - `203.0.113.0/24` (TEST-NET-3) /// /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true); /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true); /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true); /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_documentation(&self) -> bool { matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _]) } /// Converts this address to an [IPv4-compatible] [`IPv6` address]. /// /// `a.b.c.d` becomes `::a.b.c.d` /// /// Note that IPv4-compatible addresses have been officially deprecated. /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead. /// /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses /// [`IPv6` address]: Ipv6Addr /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!( /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(), /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff) /// ); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn to_ipv6_compatible(&self) -> Ipv6Addr { let [a, b, c, d] = self.octets(); Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] } } /// Converts this address to an [IPv4-mapped] [`IPv6` address]. /// /// `a.b.c.d` becomes `::ffff:a.b.c.d` /// /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses /// [`IPv6` address]: Ipv6Addr /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(), /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff)); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn to_ipv6_mapped(&self) -> Ipv6Addr { let [a, b, c, d] = self.octets(); Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] } } } #[stable(feature = "ip_addr", since = "1.7.0")] impl fmt::Display for IpAddr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { match self { IpAddr::V4(ip) => ip.fmt(fmt), IpAddr::V6(ip) => ip.fmt(fmt), } } } #[stable(feature = "ip_addr", since = "1.7.0")] impl fmt::Debug for IpAddr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(self, fmt) } } #[stable(feature = "ip_from_ip", since = "1.16.0")] impl From for IpAddr { /// Copies this address to a new `IpAddr::V4`. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr}; /// /// let addr = Ipv4Addr::new(127, 0, 0, 1); /// /// assert_eq!( /// IpAddr::V4(addr), /// IpAddr::from(addr) /// ) /// ``` #[inline] fn from(ipv4: Ipv4Addr) -> IpAddr { IpAddr::V4(ipv4) } } #[stable(feature = "ip_from_ip", since = "1.16.0")] impl From for IpAddr { /// Copies this address to a new `IpAddr::V6`. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv6Addr}; /// /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); /// /// assert_eq!( /// IpAddr::V6(addr), /// IpAddr::from(addr) /// ); /// ``` #[inline] fn from(ipv6: Ipv6Addr) -> IpAddr { IpAddr::V6(ipv6) } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Ipv4Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { let octets = self.octets(); // Fast Path: if there's no alignment stuff, write directly to the buffer if fmt.precision().is_none() && fmt.width().is_none() { write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]) } else { const IPV4_BUF_LEN: usize = 15; // Long enough for the longest possible IPv4 address let mut buf = [0u8; IPV4_BUF_LEN]; let mut buf_slice = &mut buf[..]; // Note: The call to write should never fail, hence the unwrap write!(buf_slice, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap(); let len = IPV4_BUF_LEN - buf_slice.len(); // This unsafe is OK because we know what is being written to the buffer let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) }; fmt.pad(buf) } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Ipv4Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(self, fmt) } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for IpAddr { #[inline] fn eq(&self, other: &Ipv4Addr) -> bool { match self { IpAddr::V4(v4) => v4 == other, IpAddr::V6(_) => false, } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for Ipv4Addr { #[inline] fn eq(&self, other: &IpAddr) -> bool { match other { IpAddr::V4(v4) => self == v4, IpAddr::V6(_) => false, } } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Ipv4Addr { #[inline] fn partial_cmp(&self, other: &Ipv4Addr) -> Option { Some(self.cmp(other)) } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for IpAddr { #[inline] fn partial_cmp(&self, other: &Ipv4Addr) -> Option { match self { IpAddr::V4(v4) => v4.partial_cmp(other), IpAddr::V6(_) => Some(Ordering::Greater), } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for Ipv4Addr { #[inline] fn partial_cmp(&self, other: &IpAddr) -> Option { match other { IpAddr::V4(v4) => self.partial_cmp(v4), IpAddr::V6(_) => Some(Ordering::Less), } } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Ipv4Addr { #[inline] fn cmp(&self, other: &Ipv4Addr) -> Ordering { self.octets.cmp(&other.octets) } } impl IntoInner for Ipv4Addr { #[inline] fn into_inner(self) -> c::in_addr { // `s_addr` is stored as BE on all machines and the array is in BE order. // So the native endian conversion method is used so that it's never swapped. c::in_addr { s_addr: u32::from_ne_bytes(self.octets) } } } impl FromInner for Ipv4Addr { fn from_inner(addr: c::in_addr) -> Ipv4Addr { Ipv4Addr { octets: addr.s_addr.to_ne_bytes() } } } #[stable(feature = "ip_u32", since = "1.1.0")] impl From for u32 { /// Converts an `Ipv4Addr` into a host byte order `u32`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78); /// assert_eq!(0x12345678, u32::from(addr)); /// ``` #[inline] fn from(ip: Ipv4Addr) -> u32 { u32::from_be_bytes(ip.octets) } } #[stable(feature = "ip_u32", since = "1.1.0")] impl From for Ipv4Addr { /// Converts a host byte order `u32` into an `Ipv4Addr`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::from(0x12345678); /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr); /// ``` #[inline] fn from(ip: u32) -> Ipv4Addr { Ipv4Addr { octets: ip.to_be_bytes() } } } #[stable(feature = "from_slice_v4", since = "1.9.0")] impl From<[u8; 4]> for Ipv4Addr { /// Creates an `Ipv4Addr` from a four element byte array. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]); /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr); /// ``` #[inline] fn from(octets: [u8; 4]) -> Ipv4Addr { Ipv4Addr { octets } } } #[stable(feature = "ip_from_slice", since = "1.17.0")] impl From<[u8; 4]> for IpAddr { /// Creates an `IpAddr::V4` from a four element byte array. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv4Addr}; /// /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]); /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr); /// ``` #[inline] fn from(octets: [u8; 4]) -> IpAddr { IpAddr::V4(Ipv4Addr::from(octets)) } } impl Ipv6Addr { /// Creates a new IPv6 address from eight 16-bit segments. /// /// The result will represent the IP address `a:b:c:d:e:f:g:h`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff); /// ``` #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use] #[inline] pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr { let addr16 = [ a.to_be(), b.to_be(), c.to_be(), d.to_be(), e.to_be(), f.to_be(), g.to_be(), h.to_be(), ]; Ipv6Addr { // All elements in `addr16` are big endian. // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`. octets: unsafe { transmute::<_, [u8; 16]>(addr16) }, } } /// An IPv6 address representing localhost: `::1`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::LOCALHOST; /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1); /// An IPv6 address representing the unspecified address: `::` /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::UNSPECIFIED; /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); /// ``` #[stable(feature = "ip_constructors", since = "1.30.0")] pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0); /// Returns the eight 16-bit segments that make up this address. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(), /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use] #[inline] pub const fn segments(&self) -> [u16; 8] { // All elements in `self.octets` must be big endian. // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`. let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) }; // We want native endian u16 [ u16::from_be(a), u16::from_be(b), u16::from_be(c), u16::from_be(d), u16::from_be(e), u16::from_be(f), u16::from_be(g), u16::from_be(h), ] } /// Returns [`true`] for the special 'unspecified' address (`::`). /// /// This property is defined in [IETF RFC 4291]. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_unspecified(&self) -> bool { u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets()) } /// Returns [`true`] if this is the [loopback address] (`::1`), /// as defined in [IETF RFC 4291 section 2.5.3]. /// /// Contrary to IPv4, in IPv6 there is only one loopback address. /// /// [loopback address]: Ipv6Addr::LOCALHOST /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3 /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_loopback(&self) -> bool { u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets()) } /// Returns [`true`] if the address appears to be globally routable. /// /// The following return [`false`]: /// /// - the loopback address /// - link-local and unique local unicast addresses /// - interface-, link-, realm-, admin- and site-local multicast addresses /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_global(&self) -> bool { match self.multicast_scope() { Some(Ipv6MulticastScope::Global) => true, None => self.is_unicast_global(), _ => false, } } /// Returns [`true`] if this is a unique local address (`fc00::/7`). /// /// This property is defined in [IETF RFC 4193]. /// /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193 /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false); /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_unique_local(&self) -> bool { (self.segments()[0] & 0xfe00) == 0xfc00 } /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291]. /// Any address that is not a [multicast address] (`ff00::/8`) is unicast. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [multicast address]: Ipv6Addr::is_multicast /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// // The unspecified and loopback addresses are unicast. /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true); /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true); /// /// // Any address that is not a multicast address (`ff00::/8`) is unicast. /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true); /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_unicast(&self) -> bool { !self.is_multicast() } /// Returns `true` if the address is a unicast address with link-local scope, /// as defined in [RFC 4291]. /// /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4]. /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6], /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format: /// /// ```text /// | 10 bits | 54 bits | 64 bits | /// +----------+-------------------------+----------------------------+ /// |1111111010| 0 | interface ID | /// +----------+-------------------------+----------------------------+ /// ``` /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`, /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated, /// and those addresses will have link-local scope. /// /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope", /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it. /// /// [RFC 4291]: https://tools.ietf.org/html/rfc4291 /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4 /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3 /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6 /// [loopback address]: Ipv6Addr::LOCALHOST /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// // The loopback address (`::1`) does not actually have link-local scope. /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false); /// /// // Only addresses in `fe80::/10` have link-local scope. /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false); /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true); /// /// // Addresses outside the stricter `fe80::/64` also have link-local scope. /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true); /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_unicast_link_local(&self) -> bool { (self.segments()[0] & 0xffc0) == 0xfe80 } /// Returns [`true`] if this is an address reserved for documentation /// (`2001:db8::/32`). /// /// This property is defined in [IETF RFC 3849]. /// /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849 /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false); /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_documentation(&self) -> bool { (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8) } /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`). /// /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`. /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`. /// /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180 /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752 /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false); /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true); /// ``` #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_benchmarking(&self) -> bool { (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0) } /// Returns [`true`] if the address is a globally routable unicast address. /// /// The following return false: /// /// - the loopback address /// - the link-local addresses /// - unique local addresses /// - the unspecified address /// - the address range reserved for documentation /// /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7] /// /// ```no_rust /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer /// be supported in new implementations (i.e., new implementations must treat this prefix as /// Global Unicast). /// ``` /// /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7 /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn is_unicast_global(&self) -> bool { self.is_unicast() && !self.is_loopback() && !self.is_unicast_link_local() && !self.is_unique_local() && !self.is_unspecified() && !self.is_documentation() } /// Returns the address's multicast scope if the address is multicast. /// /// # Examples /// /// ``` /// #![feature(ip)] /// /// use std::net::{Ipv6Addr, Ipv6MulticastScope}; /// /// assert_eq!( /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(), /// Some(Ipv6MulticastScope::Global) /// ); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use] #[inline] pub const fn multicast_scope(&self) -> Option { if self.is_multicast() { match self.segments()[0] & 0x000f { 1 => Some(Ipv6MulticastScope::InterfaceLocal), 2 => Some(Ipv6MulticastScope::LinkLocal), 3 => Some(Ipv6MulticastScope::RealmLocal), 4 => Some(Ipv6MulticastScope::AdminLocal), 5 => Some(Ipv6MulticastScope::SiteLocal), 8 => Some(Ipv6MulticastScope::OrganizationLocal), 14 => Some(Ipv6MulticastScope::Global), _ => None, } } else { None } } /// Returns [`true`] if this is a multicast address (`ff00::/8`). /// /// This property is defined by [IETF RFC 4291]. /// /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291 /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(since = "1.7.0", feature = "ip_17")] #[must_use] #[inline] pub const fn is_multicast(&self) -> bool { (self.segments()[0] & 0xff00) == 0xff00 } /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address, /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`]. /// /// `::ffff:a.b.c.d` becomes `a.b.c.d`. /// All addresses *not* starting with `::ffff` will return `None`. /// /// [`IPv4` address]: Ipv4Addr /// [IPv4-mapped]: Ipv6Addr /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2 /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(), /// Some(Ipv4Addr::new(192, 10, 2, 255))); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn to_ipv4_mapped(&self) -> Option { match self.octets() { [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => { Some(Ipv4Addr::new(a, b, c, d)) } _ => None, } } /// Converts this address to an [`IPv4` address] if it is either /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1], /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2], /// otherwise returns [`None`]. /// /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this. /// /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`. /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`. /// /// [`IPv4` address]: Ipv4Addr /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2 /// /// # Examples /// /// ``` /// use std::net::{Ipv4Addr, Ipv6Addr}; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(), /// Some(Ipv4Addr::new(192, 10, 2, 255))); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(), /// Some(Ipv4Addr::new(0, 0, 0, 1))); /// ``` #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")] #[stable(feature = "rust1", since = "1.0.0")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn to_ipv4(&self) -> Option { if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() { let [a, b] = ab.to_be_bytes(); let [c, d] = cd.to_be_bytes(); Some(Ipv4Addr::new(a, b, c, d)) } else { None } } /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped addresses, otherwise it /// returns self wrapped in an `IpAddr::V6`. /// /// # Examples /// /// ``` /// #![feature(ip)] /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false); /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true); /// ``` #[rustc_const_unstable(feature = "const_ipv6", issue = "76205")] #[unstable(feature = "ip", issue = "27709")] #[must_use = "this returns the result of the operation, \ without modifying the original"] #[inline] pub const fn to_canonical(&self) -> IpAddr { if let Some(mapped) = self.to_ipv4_mapped() { return IpAddr::V4(mapped); } IpAddr::V6(*self) } /// Returns the sixteen eight-bit integers the IPv6 address consists of. /// /// ``` /// use std::net::Ipv6Addr; /// /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(), /// [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); /// ``` #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")] #[stable(feature = "ipv6_to_octets", since = "1.12.0")] #[must_use] #[inline] pub const fn octets(&self) -> [u8; 16] { self.octets } } /// Write an Ipv6Addr, conforming to the canonical style described by /// [RFC 5952](https://tools.ietf.org/html/rfc5952). #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Display for Ipv6Addr { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // If there are no alignment requirements, write out the IP address to // f. Otherwise, write it to a local buffer, then use f.pad. if f.precision().is_none() && f.width().is_none() { let segments = self.segments(); // Special case for :: and ::1; otherwise they get written with the // IPv4 formatter if self.is_unspecified() { f.write_str("::") } else if self.is_loopback() { f.write_str("::1") } else if let Some(ipv4) = self.to_ipv4() { match segments[5] { // IPv4 Compatible address 0 => write!(f, "::{}", ipv4), // IPv4 Mapped address 0xffff => write!(f, "::ffff:{}", ipv4), _ => unreachable!(), } } else { #[derive(Copy, Clone, Default)] struct Span { start: usize, len: usize, } // Find the inner 0 span let zeroes = { let mut longest = Span::default(); let mut current = Span::default(); for (i, &segment) in segments.iter().enumerate() { if segment == 0 { if current.len == 0 { current.start = i; } current.len += 1; if current.len > longest.len { longest = current; } } else { current = Span::default(); } } longest }; /// Write a colon-separated part of the address #[inline] fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result { if let Some((first, tail)) = chunk.split_first() { write!(f, "{:x}", first)?; for segment in tail { f.write_char(':')?; write!(f, "{:x}", segment)?; } } Ok(()) } if zeroes.len > 1 { fmt_subslice(f, &segments[..zeroes.start])?; f.write_str("::")?; fmt_subslice(f, &segments[zeroes.start + zeroes.len..]) } else { fmt_subslice(f, &segments) } } } else { // Slow path: write the address to a local buffer, then use f.pad. // Defined recursively by using the fast path to write to the // buffer. // This is the largest possible size of an IPv6 address const IPV6_BUF_LEN: usize = (4 * 8) + 7; let mut buf = [0u8; IPV6_BUF_LEN]; let mut buf_slice = &mut buf[..]; // Note: This call to write should never fail, so unwrap is okay. write!(buf_slice, "{}", self).unwrap(); let len = IPV6_BUF_LEN - buf_slice.len(); // This is safe because we know exactly what can be in this buffer let buf = unsafe { crate::str::from_utf8_unchecked(&buf[..len]) }; f.pad(buf) } } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for Ipv6Addr { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(self, fmt) } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for Ipv6Addr { #[inline] fn eq(&self, other: &IpAddr) -> bool { match other { IpAddr::V4(_) => false, IpAddr::V6(v6) => self == v6, } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialEq for IpAddr { #[inline] fn eq(&self, other: &Ipv6Addr) -> bool { match self { IpAddr::V4(_) => false, IpAddr::V6(v6) => v6 == other, } } } #[stable(feature = "rust1", since = "1.0.0")] impl PartialOrd for Ipv6Addr { #[inline] fn partial_cmp(&self, other: &Ipv6Addr) -> Option { Some(self.cmp(other)) } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for IpAddr { #[inline] fn partial_cmp(&self, other: &Ipv6Addr) -> Option { match self { IpAddr::V4(_) => Some(Ordering::Less), IpAddr::V6(v6) => v6.partial_cmp(other), } } } #[stable(feature = "ip_cmp", since = "1.16.0")] impl PartialOrd for Ipv6Addr { #[inline] fn partial_cmp(&self, other: &IpAddr) -> Option { match other { IpAddr::V4(_) => Some(Ordering::Greater), IpAddr::V6(v6) => self.partial_cmp(v6), } } } #[stable(feature = "rust1", since = "1.0.0")] impl Ord for Ipv6Addr { #[inline] fn cmp(&self, other: &Ipv6Addr) -> Ordering { self.segments().cmp(&other.segments()) } } impl IntoInner for Ipv6Addr { fn into_inner(self) -> c::in6_addr { c::in6_addr { s6_addr: self.octets } } } impl FromInner for Ipv6Addr { #[inline] fn from_inner(addr: c::in6_addr) -> Ipv6Addr { Ipv6Addr { octets: addr.s6_addr } } } #[stable(feature = "i128", since = "1.26.0")] impl From for u128 { /// Convert an `Ipv6Addr` into a host byte order `u128`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::new( /// 0x1020, 0x3040, 0x5060, 0x7080, /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, /// ); /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr)); /// ``` #[inline] fn from(ip: Ipv6Addr) -> u128 { u128::from_be_bytes(ip.octets) } } #[stable(feature = "i128", since = "1.26.0")] impl From for Ipv6Addr { /// Convert a host byte order `u128` into an `Ipv6Addr`. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128); /// assert_eq!( /// Ipv6Addr::new( /// 0x1020, 0x3040, 0x5060, 0x7080, /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D, /// ), /// addr); /// ``` #[inline] fn from(ip: u128) -> Ipv6Addr { Ipv6Addr::from(ip.to_be_bytes()) } } #[stable(feature = "ipv6_from_octets", since = "1.9.0")] impl From<[u8; 16]> for Ipv6Addr { /// Creates an `Ipv6Addr` from a sixteen element byte array. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::from([ /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8, /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8, /// ]); /// assert_eq!( /// Ipv6Addr::new( /// 0x1918, 0x1716, /// 0x1514, 0x1312, /// 0x1110, 0x0f0e, /// 0x0d0c, 0x0b0a /// ), /// addr /// ); /// ``` #[inline] fn from(octets: [u8; 16]) -> Ipv6Addr { Ipv6Addr { octets } } } #[stable(feature = "ipv6_from_segments", since = "1.16.0")] impl From<[u16; 8]> for Ipv6Addr { /// Creates an `Ipv6Addr` from an eight element 16-bit array. /// /// # Examples /// /// ``` /// use std::net::Ipv6Addr; /// /// let addr = Ipv6Addr::from([ /// 525u16, 524u16, 523u16, 522u16, /// 521u16, 520u16, 519u16, 518u16, /// ]); /// assert_eq!( /// Ipv6Addr::new( /// 0x20d, 0x20c, /// 0x20b, 0x20a, /// 0x209, 0x208, /// 0x207, 0x206 /// ), /// addr /// ); /// ``` #[inline] fn from(segments: [u16; 8]) -> Ipv6Addr { let [a, b, c, d, e, f, g, h] = segments; Ipv6Addr::new(a, b, c, d, e, f, g, h) } } #[stable(feature = "ip_from_slice", since = "1.17.0")] impl From<[u8; 16]> for IpAddr { /// Creates an `IpAddr::V6` from a sixteen element byte array. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv6Addr}; /// /// let addr = IpAddr::from([ /// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8, /// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8, /// ]); /// assert_eq!( /// IpAddr::V6(Ipv6Addr::new( /// 0x1918, 0x1716, /// 0x1514, 0x1312, /// 0x1110, 0x0f0e, /// 0x0d0c, 0x0b0a /// )), /// addr /// ); /// ``` #[inline] fn from(octets: [u8; 16]) -> IpAddr { IpAddr::V6(Ipv6Addr::from(octets)) } } #[stable(feature = "ip_from_slice", since = "1.17.0")] impl From<[u16; 8]> for IpAddr { /// Creates an `IpAddr::V6` from an eight element 16-bit array. /// /// # Examples /// /// ``` /// use std::net::{IpAddr, Ipv6Addr}; /// /// let addr = IpAddr::from([ /// 525u16, 524u16, 523u16, 522u16, /// 521u16, 520u16, 519u16, 518u16, /// ]); /// assert_eq!( /// IpAddr::V6(Ipv6Addr::new( /// 0x20d, 0x20c, /// 0x20b, 0x20a, /// 0x209, 0x208, /// 0x207, 0x206 /// )), /// addr /// ); /// ``` #[inline] fn from(segments: [u16; 8]) -> IpAddr { IpAddr::V6(Ipv6Addr::from(segments)) } }