#[cfg(all(test, not(any(target_os = "emscripten", target_env = "sgx"))))] mod tests; use crate::fmt; use crate::io::{self, ErrorKind}; use crate::net::{Ipv4Addr, Ipv6Addr, SocketAddr, ToSocketAddrs}; use crate::sys_common::net as net_imp; use crate::sys_common::{AsInner, FromInner, IntoInner}; use crate::time::Duration; /// A UDP socket. /// /// After creating a `UdpSocket` by [`bind`]ing it to a socket address, data can be /// [sent to] and [received from] any other socket address. /// /// Although UDP is a connectionless protocol, this implementation provides an interface /// to set an address where data should be sent and received from. After setting a remote /// address with [`connect`], data can be sent to and received from that address with /// [`send`] and [`recv`]. /// /// As stated in the User Datagram Protocol's specification in [IETF RFC 768], UDP is /// an unordered, unreliable protocol; refer to [`TcpListener`] and [`TcpStream`] for TCP /// primitives. /// /// [`bind`]: UdpSocket::bind /// [`connect`]: UdpSocket::connect /// [IETF RFC 768]: https://tools.ietf.org/html/rfc768 /// [`recv`]: UdpSocket::recv /// [received from]: UdpSocket::recv_from /// [`send`]: UdpSocket::send /// [sent to]: UdpSocket::send_to /// [`TcpListener`]: crate::net::TcpListener /// [`TcpStream`]: crate::net::TcpStream /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// fn main() -> std::io::Result<()> { /// { /// let socket = UdpSocket::bind("127.0.0.1:34254")?; /// /// // Receives a single datagram message on the socket. If `buf` is too small to hold /// // the message, it will be cut off. /// let mut buf = [0; 10]; /// let (amt, src) = socket.recv_from(&mut buf)?; /// /// // Redeclare `buf` as slice of the received data and send reverse data back to origin. /// let buf = &mut buf[..amt]; /// buf.reverse(); /// socket.send_to(buf, &src)?; /// } // the socket is closed here /// Ok(()) /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub struct UdpSocket(net_imp::UdpSocket); impl UdpSocket { /// Creates a UDP socket from the given address. /// /// The address type can be any implementor of [`ToSocketAddrs`] trait. See /// its documentation for concrete examples. /// /// If `addr` yields multiple addresses, `bind` will be attempted with /// each of the addresses until one succeeds and returns the socket. If none /// of the addresses succeed in creating a socket, the error returned from /// the last attempt (the last address) is returned. /// /// # Examples /// /// Creates a UDP socket bound to `127.0.0.1:3400`: /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:3400").expect("couldn't bind to address"); /// ``` /// /// Creates a UDP socket bound to `127.0.0.1:3400`. If the socket cannot be /// bound to that address, create a UDP socket bound to `127.0.0.1:3401`: /// /// ```no_run /// use std::net::{SocketAddr, UdpSocket}; /// /// let addrs = [ /// SocketAddr::from(([127, 0, 0, 1], 3400)), /// SocketAddr::from(([127, 0, 0, 1], 3401)), /// ]; /// let socket = UdpSocket::bind(&addrs[..]).expect("couldn't bind to address"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn bind(addr: A) -> io::Result { super::each_addr(addr, net_imp::UdpSocket::bind).map(UdpSocket) } /// Receives a single datagram message on the socket. On success, returns the number /// of bytes read and the origin. /// /// The function must be called with valid byte array `buf` of sufficient size to /// hold the message bytes. If a message is too long to fit in the supplied buffer, /// excess bytes may be discarded. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// let mut buf = [0; 10]; /// let (number_of_bytes, src_addr) = socket.recv_from(&mut buf) /// .expect("Didn't receive data"); /// let filled_buf = &mut buf[..number_of_bytes]; /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.0.recv_from(buf) } /// Receives a single datagram message on the socket, without removing it from the /// queue. On success, returns the number of bytes read and the origin. /// /// The function must be called with valid byte array `buf` of sufficient size to /// hold the message bytes. If a message is too long to fit in the supplied buffer, /// excess bytes may be discarded. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying `recvfrom` system call. /// /// Do not use this function to implement busy waiting, instead use `libc::poll` to /// synchronize IO events on one or more sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// let mut buf = [0; 10]; /// let (number_of_bytes, src_addr) = socket.peek_from(&mut buf) /// .expect("Didn't receive data"); /// let filled_buf = &mut buf[..number_of_bytes]; /// ``` #[stable(feature = "peek", since = "1.18.0")] pub fn peek_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { self.0.peek_from(buf) } /// Sends data on the socket to the given address. On success, returns the /// number of bytes written. /// /// Address type can be any implementor of [`ToSocketAddrs`] trait. See its /// documentation for concrete examples. /// /// It is possible for `addr` to yield multiple addresses, but `send_to` /// will only send data to the first address yielded by `addr`. /// /// This will return an error when the IP version of the local socket /// does not match that returned from [`ToSocketAddrs`]. /// /// See [Issue #34202] for more details. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.send_to(&[0; 10], "127.0.0.1:4242").expect("couldn't send data"); /// ``` /// /// [Issue #34202]: https://github.com/rust-lang/rust/issues/34202 #[stable(feature = "rust1", since = "1.0.0")] pub fn send_to(&self, buf: &[u8], addr: A) -> io::Result { match addr.to_socket_addrs()?.next() { Some(addr) => self.0.send_to(buf, &addr), None => { Err(io::const_io_error!(ErrorKind::InvalidInput, "no addresses to send data to")) } } } /// Returns the socket address of the remote peer this socket was connected to. /// /// # Examples /// /// ```no_run /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4, UdpSocket}; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("192.168.0.1:41203").expect("couldn't connect to address"); /// assert_eq!(socket.peer_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(192, 168, 0, 1), 41203))); /// ``` /// /// If the socket isn't connected, it will return a [`NotConnected`] error. /// /// [`NotConnected`]: io::ErrorKind::NotConnected /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// assert_eq!(socket.peer_addr().unwrap_err().kind(), /// std::io::ErrorKind::NotConnected); /// ``` #[stable(feature = "udp_peer_addr", since = "1.40.0")] pub fn peer_addr(&self) -> io::Result { self.0.peer_addr() } /// Returns the socket address that this socket was created from. /// /// # Examples /// /// ```no_run /// use std::net::{Ipv4Addr, SocketAddr, SocketAddrV4, UdpSocket}; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// assert_eq!(socket.local_addr().unwrap(), /// SocketAddr::V4(SocketAddrV4::new(Ipv4Addr::new(127, 0, 0, 1), 34254))); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn local_addr(&self) -> io::Result { self.0.socket_addr() } /// Creates a new independently owned handle to the underlying socket. /// /// The returned `UdpSocket` is a reference to the same socket that this /// object references. Both handles will read and write the same port, and /// options set on one socket will be propagated to the other. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// let socket_clone = socket.try_clone().expect("couldn't clone the socket"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn try_clone(&self) -> io::Result { self.0.duplicate().map(UdpSocket) } /// Sets the read timeout to the timeout specified. /// /// If the value specified is [`None`], then [`read`] calls will block /// indefinitely. An [`Err`] is returned if the zero [`Duration`] is /// passed to this method. /// /// # Platform-specific behavior /// /// Platforms may return a different error code whenever a read times out as /// a result of setting this option. For example Unix typically returns an /// error of the kind [`WouldBlock`], but Windows may return [`TimedOut`]. /// /// [`read`]: io::Read::read /// [`WouldBlock`]: io::ErrorKind::WouldBlock /// [`TimedOut`]: io::ErrorKind::TimedOut /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_read_timeout(None).expect("set_read_timeout call failed"); /// ``` /// /// An [`Err`] is returned if the zero [`Duration`] is passed to this /// method: /// /// ```no_run /// use std::io; /// use std::net::UdpSocket; /// use std::time::Duration; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").unwrap(); /// let result = socket.set_read_timeout(Some(Duration::new(0, 0))); /// let err = result.unwrap_err(); /// assert_eq!(err.kind(), io::ErrorKind::InvalidInput) /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn set_read_timeout(&self, dur: Option) -> io::Result<()> { self.0.set_read_timeout(dur) } /// Sets the write timeout to the timeout specified. /// /// If the value specified is [`None`], then [`write`] calls will block /// indefinitely. An [`Err`] is returned if the zero [`Duration`] is /// passed to this method. /// /// # Platform-specific behavior /// /// Platforms may return a different error code whenever a write times out /// as a result of setting this option. For example Unix typically returns /// an error of the kind [`WouldBlock`], but Windows may return [`TimedOut`]. /// /// [`write`]: io::Write::write /// [`WouldBlock`]: io::ErrorKind::WouldBlock /// [`TimedOut`]: io::ErrorKind::TimedOut /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_write_timeout(None).expect("set_write_timeout call failed"); /// ``` /// /// An [`Err`] is returned if the zero [`Duration`] is passed to this /// method: /// /// ```no_run /// use std::io; /// use std::net::UdpSocket; /// use std::time::Duration; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").unwrap(); /// let result = socket.set_write_timeout(Some(Duration::new(0, 0))); /// let err = result.unwrap_err(); /// assert_eq!(err.kind(), io::ErrorKind::InvalidInput) /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn set_write_timeout(&self, dur: Option) -> io::Result<()> { self.0.set_write_timeout(dur) } /// Returns the read timeout of this socket. /// /// If the timeout is [`None`], then [`read`] calls will block indefinitely. /// /// [`read`]: io::Read::read /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_read_timeout(None).expect("set_read_timeout call failed"); /// assert_eq!(socket.read_timeout().unwrap(), None); /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn read_timeout(&self) -> io::Result> { self.0.read_timeout() } /// Returns the write timeout of this socket. /// /// If the timeout is [`None`], then [`write`] calls will block indefinitely. /// /// [`write`]: io::Write::write /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_write_timeout(None).expect("set_write_timeout call failed"); /// assert_eq!(socket.write_timeout().unwrap(), None); /// ``` #[stable(feature = "socket_timeout", since = "1.4.0")] pub fn write_timeout(&self) -> io::Result> { self.0.write_timeout() } /// Sets the value of the `SO_BROADCAST` option for this socket. /// /// When enabled, this socket is allowed to send packets to a broadcast /// address. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_broadcast(false).expect("set_broadcast call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_broadcast(&self, broadcast: bool) -> io::Result<()> { self.0.set_broadcast(broadcast) } /// Gets the value of the `SO_BROADCAST` option for this socket. /// /// For more information about this option, see [`UdpSocket::set_broadcast`]. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_broadcast(false).expect("set_broadcast call failed"); /// assert_eq!(socket.broadcast().unwrap(), false); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn broadcast(&self) -> io::Result { self.0.broadcast() } /// Sets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// If enabled, multicast packets will be looped back to the local socket. /// Note that this might not have any effect on IPv6 sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v4(false).expect("set_multicast_loop_v4 call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_multicast_loop_v4(&self, multicast_loop_v4: bool) -> io::Result<()> { self.0.set_multicast_loop_v4(multicast_loop_v4) } /// Gets the value of the `IP_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see [`UdpSocket::set_multicast_loop_v4`]. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v4(false).expect("set_multicast_loop_v4 call failed"); /// assert_eq!(socket.multicast_loop_v4().unwrap(), false); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn multicast_loop_v4(&self) -> io::Result { self.0.multicast_loop_v4() } /// Sets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// Indicates the time-to-live value of outgoing multicast packets for /// this socket. The default value is 1 which means that multicast packets /// don't leave the local network unless explicitly requested. /// /// Note that this might not have any effect on IPv6 sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_ttl_v4(42).expect("set_multicast_ttl_v4 call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_multicast_ttl_v4(&self, multicast_ttl_v4: u32) -> io::Result<()> { self.0.set_multicast_ttl_v4(multicast_ttl_v4) } /// Gets the value of the `IP_MULTICAST_TTL` option for this socket. /// /// For more information about this option, see [`UdpSocket::set_multicast_ttl_v4`]. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_ttl_v4(42).expect("set_multicast_ttl_v4 call failed"); /// assert_eq!(socket.multicast_ttl_v4().unwrap(), 42); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn multicast_ttl_v4(&self) -> io::Result { self.0.multicast_ttl_v4() } /// Sets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// Controls whether this socket sees the multicast packets it sends itself. /// Note that this might not have any affect on IPv4 sockets. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v6(false).expect("set_multicast_loop_v6 call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_multicast_loop_v6(&self, multicast_loop_v6: bool) -> io::Result<()> { self.0.set_multicast_loop_v6(multicast_loop_v6) } /// Gets the value of the `IPV6_MULTICAST_LOOP` option for this socket. /// /// For more information about this option, see [`UdpSocket::set_multicast_loop_v6`]. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_multicast_loop_v6(false).expect("set_multicast_loop_v6 call failed"); /// assert_eq!(socket.multicast_loop_v6().unwrap(), false); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn multicast_loop_v6(&self) -> io::Result { self.0.multicast_loop_v6() } /// Sets the value for the `IP_TTL` option on this socket. /// /// This value sets the time-to-live field that is used in every packet sent /// from this socket. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_ttl(42).expect("set_ttl call failed"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_ttl(&self, ttl: u32) -> io::Result<()> { self.0.set_ttl(ttl) } /// Gets the value of the `IP_TTL` option for this socket. /// /// For more information about this option, see [`UdpSocket::set_ttl`]. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.set_ttl(42).expect("set_ttl call failed"); /// assert_eq!(socket.ttl().unwrap(), 42); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn ttl(&self) -> io::Result { self.0.ttl() } /// Executes an operation of the `IP_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// address of the local interface with which the system should join the /// multicast group. If it's equal to `INADDR_ANY` then an appropriate /// interface is chosen by the system. #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn join_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.0.join_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_ADD_MEMBERSHIP` type. /// /// This function specifies a new multicast group for this socket to join. /// The address must be a valid multicast address, and `interface` is the /// index of the interface to join/leave (or 0 to indicate any interface). #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn join_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.0.join_multicast_v6(multiaddr, interface) } /// Executes an operation of the `IP_DROP_MEMBERSHIP` type. /// /// For more information about this option, see [`UdpSocket::join_multicast_v4`]. #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn leave_multicast_v4(&self, multiaddr: &Ipv4Addr, interface: &Ipv4Addr) -> io::Result<()> { self.0.leave_multicast_v4(multiaddr, interface) } /// Executes an operation of the `IPV6_DROP_MEMBERSHIP` type. /// /// For more information about this option, see [`UdpSocket::join_multicast_v6`]. #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn leave_multicast_v6(&self, multiaddr: &Ipv6Addr, interface: u32) -> io::Result<()> { self.0.leave_multicast_v6(multiaddr, interface) } /// Gets the value of the `SO_ERROR` option on this socket. /// /// This will retrieve the stored error in the underlying socket, clearing /// the field in the process. This can be useful for checking errors between /// calls. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// match socket.take_error() { /// Ok(Some(error)) => println!("UdpSocket error: {error:?}"), /// Ok(None) => println!("No error"), /// Err(error) => println!("UdpSocket.take_error failed: {error:?}"), /// } /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn take_error(&self) -> io::Result> { self.0.take_error() } /// Connects this UDP socket to a remote address, allowing the `send` and /// `recv` syscalls to be used to send data and also applies filters to only /// receive data from the specified address. /// /// If `addr` yields multiple addresses, `connect` will be attempted with /// each of the addresses until the underlying OS function returns no /// error. Note that usually, a successful `connect` call does not specify /// that there is a remote server listening on the port, rather, such an /// error would only be detected after the first send. If the OS returns an /// error for each of the specified addresses, the error returned from the /// last connection attempt (the last address) is returned. /// /// # Examples /// /// Creates a UDP socket bound to `127.0.0.1:3400` and connect the socket to /// `127.0.0.1:8080`: /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:3400").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// ``` /// /// Unlike in the TCP case, passing an array of addresses to the `connect` /// function of a UDP socket is not a useful thing to do: The OS will be /// unable to determine whether something is listening on the remote /// address without the application sending data. #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn connect(&self, addr: A) -> io::Result<()> { super::each_addr(addr, |addr| self.0.connect(addr)) } /// Sends data on the socket to the remote address to which it is connected. /// /// [`UdpSocket::connect`] will connect this socket to a remote address. This /// method will fail if the socket is not connected. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// socket.send(&[0, 1, 2]).expect("couldn't send message"); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn send(&self, buf: &[u8]) -> io::Result { self.0.send(buf) } /// Receives a single datagram message on the socket from the remote address to /// which it is connected. On success, returns the number of bytes read. /// /// The function must be called with valid byte array `buf` of sufficient size to /// hold the message bytes. If a message is too long to fit in the supplied buffer, /// excess bytes may be discarded. /// /// [`UdpSocket::connect`] will connect this socket to a remote address. This /// method will fail if the socket is not connected. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// let mut buf = [0; 10]; /// match socket.recv(&mut buf) { /// Ok(received) => println!("received {received} bytes {:?}", &buf[..received]), /// Err(e) => println!("recv function failed: {e:?}"), /// } /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn recv(&self, buf: &mut [u8]) -> io::Result { self.0.recv(buf) } /// Receives single datagram on the socket from the remote address to which it is /// connected, without removing the message from input queue. On success, returns /// the number of bytes peeked. /// /// The function must be called with valid byte array `buf` of sufficient size to /// hold the message bytes. If a message is too long to fit in the supplied buffer, /// excess bytes may be discarded. /// /// Successive calls return the same data. This is accomplished by passing /// `MSG_PEEK` as a flag to the underlying `recv` system call. /// /// Do not use this function to implement busy waiting, instead use `libc::poll` to /// synchronize IO events on one or more sockets. /// /// [`UdpSocket::connect`] will connect this socket to a remote address. This /// method will fail if the socket is not connected. /// /// # Errors /// /// This method will fail if the socket is not connected. The `connect` method /// will connect this socket to a remote address. /// /// # Examples /// /// ```no_run /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:34254").expect("couldn't bind to address"); /// socket.connect("127.0.0.1:8080").expect("connect function failed"); /// let mut buf = [0; 10]; /// match socket.peek(&mut buf) { /// Ok(received) => println!("received {received} bytes"), /// Err(e) => println!("peek function failed: {e:?}"), /// } /// ``` #[stable(feature = "peek", since = "1.18.0")] pub fn peek(&self, buf: &mut [u8]) -> io::Result { self.0.peek(buf) } /// Moves this UDP socket into or out of nonblocking mode. /// /// This will result in `recv`, `recv_from`, `send`, and `send_to` /// operations becoming nonblocking, i.e., immediately returning from their /// calls. If the IO operation is successful, `Ok` is returned and no /// further action is required. If the IO operation could not be completed /// and needs to be retried, an error with kind /// [`io::ErrorKind::WouldBlock`] is returned. /// /// On Unix platforms, calling this method corresponds to calling `fcntl` /// `FIONBIO`. On Windows calling this method corresponds to calling /// `ioctlsocket` `FIONBIO`. /// /// # Examples /// /// Creates a UDP socket bound to `127.0.0.1:7878` and read bytes in /// nonblocking mode: /// /// ```no_run /// use std::io; /// use std::net::UdpSocket; /// /// let socket = UdpSocket::bind("127.0.0.1:7878").unwrap(); /// socket.set_nonblocking(true).unwrap(); /// /// # fn wait_for_fd() { unimplemented!() } /// let mut buf = [0; 10]; /// let (num_bytes_read, _) = loop { /// match socket.recv_from(&mut buf) { /// Ok(n) => break n, /// Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => { /// // wait until network socket is ready, typically implemented /// // via platform-specific APIs such as epoll or IOCP /// wait_for_fd(); /// } /// Err(e) => panic!("encountered IO error: {e}"), /// } /// }; /// println!("bytes: {:?}", &buf[..num_bytes_read]); /// ``` #[stable(feature = "net2_mutators", since = "1.9.0")] pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> { self.0.set_nonblocking(nonblocking) } } // In addition to the `impl`s here, `UdpSocket` also has `impl`s for // `AsFd`/`From`/`Into` and // `AsRawFd`/`IntoRawFd`/`FromRawFd`, on Unix and WASI, and // `AsSocket`/`From`/`Into` and // `AsRawSocket`/`IntoRawSocket`/`FromRawSocket` on Windows. impl AsInner for UdpSocket { fn as_inner(&self) -> &net_imp::UdpSocket { &self.0 } } impl FromInner for UdpSocket { fn from_inner(inner: net_imp::UdpSocket) -> UdpSocket { UdpSocket(inner) } } impl IntoInner for UdpSocket { fn into_inner(self) -> net_imp::UdpSocket { self.0 } } #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for UdpSocket { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { self.0.fmt(f) } }