pub fn hashmap_random_keys() -> (u64, u64) { const KEY_LEN: usize = core::mem::size_of::(); let mut v = [0u8; KEY_LEN * 2]; imp::fill_bytes(&mut v); let key1 = v[0..KEY_LEN].try_into().unwrap(); let key2 = v[KEY_LEN..].try_into().unwrap(); (u64::from_ne_bytes(key1), u64::from_ne_bytes(key2)) } #[cfg(all( unix, not(target_os = "macos"), not(target_os = "ios"), not(target_os = "watchos"), not(target_os = "openbsd"), not(target_os = "freebsd"), not(target_os = "netbsd"), not(target_os = "fuchsia"), not(target_os = "redox"), not(target_os = "vxworks"), not(target_os = "emscripten") ))] mod imp { use crate::fs::File; use crate::io::Read; #[cfg(any(target_os = "linux", target_os = "android"))] use crate::sys::weak::syscall; #[cfg(any(target_os = "linux", target_os = "android"))] fn getrandom(buf: &mut [u8]) -> libc::ssize_t { use crate::sync::atomic::{AtomicBool, Ordering}; use crate::sys::os::errno; // A weak symbol allows interposition, e.g. for perf measurements that want to // disable randomness for consistency. Otherwise, we'll try a raw syscall. // (`getrandom` was added in glibc 2.25, musl 1.1.20, android API level 28) syscall! { fn getrandom( buffer: *mut libc::c_void, length: libc::size_t, flags: libc::c_uint ) -> libc::ssize_t } // This provides the best quality random numbers available at the given moment // without ever blocking, and is preferable to falling back to /dev/urandom. static GRND_INSECURE_AVAILABLE: AtomicBool = AtomicBool::new(true); if GRND_INSECURE_AVAILABLE.load(Ordering::Relaxed) { let ret = unsafe { getrandom(buf.as_mut_ptr().cast(), buf.len(), libc::GRND_INSECURE) }; if ret == -1 && errno() as libc::c_int == libc::EINVAL { GRND_INSECURE_AVAILABLE.store(false, Ordering::Relaxed); } else { return ret; } } unsafe { getrandom(buf.as_mut_ptr().cast(), buf.len(), libc::GRND_NONBLOCK) } } #[cfg(any(target_os = "espidf", target_os = "horizon"))] fn getrandom(buf: &mut [u8]) -> libc::ssize_t { unsafe { libc::getrandom(buf.as_mut_ptr().cast(), buf.len(), 0) } } #[cfg(not(any( target_os = "linux", target_os = "android", target_os = "espidf", target_os = "horizon" )))] fn getrandom_fill_bytes(_buf: &mut [u8]) -> bool { false } #[cfg(any( target_os = "linux", target_os = "android", target_os = "espidf", target_os = "horizon" ))] fn getrandom_fill_bytes(v: &mut [u8]) -> bool { use crate::sync::atomic::{AtomicBool, Ordering}; use crate::sys::os::errno; static GETRANDOM_UNAVAILABLE: AtomicBool = AtomicBool::new(false); if GETRANDOM_UNAVAILABLE.load(Ordering::Relaxed) { return false; } let mut read = 0; while read < v.len() { let result = getrandom(&mut v[read..]); if result == -1 { let err = errno() as libc::c_int; if err == libc::EINTR { continue; } else if err == libc::ENOSYS || err == libc::EPERM { // Fall back to reading /dev/urandom if `getrandom` is not // supported on the current kernel. // // Also fall back in case it is disabled by something like // seccomp or inside of virtual machines. GETRANDOM_UNAVAILABLE.store(true, Ordering::Relaxed); return false; } else if err == libc::EAGAIN { return false; } else { panic!("unexpected getrandom error: {err}"); } } else { read += result as usize; } } true } pub fn fill_bytes(v: &mut [u8]) { // getrandom_fill_bytes here can fail if getrandom() returns EAGAIN, // meaning it would have blocked because the non-blocking pool (urandom) // has not initialized in the kernel yet due to a lack of entropy. The // fallback we do here is to avoid blocking applications which could // depend on this call without ever knowing they do and don't have a // work around. The PRNG of /dev/urandom will still be used but over a // possibly predictable entropy pool. if getrandom_fill_bytes(v) { return; } // getrandom failed because it is permanently or temporarily (because // of missing entropy) unavailable. Open /dev/urandom, read from it, // and close it again. let mut file = File::open("/dev/urandom").expect("failed to open /dev/urandom"); file.read_exact(v).expect("failed to read /dev/urandom") } } #[cfg(target_os = "macos")] mod imp { use crate::fs::File; use crate::io::Read; use crate::sys::os::errno; use crate::sys::weak::weak; use libc::{c_int, c_void, size_t}; fn getentropy_fill_bytes(v: &mut [u8]) -> bool { weak!(fn getentropy(*mut c_void, size_t) -> c_int); getentropy .get() .map(|f| { // getentropy(2) permits a maximum buffer size of 256 bytes for s in v.chunks_mut(256) { let ret = unsafe { f(s.as_mut_ptr() as *mut c_void, s.len()) }; if ret == -1 { panic!("unexpected getentropy error: {}", errno()); } } true }) .unwrap_or(false) } pub fn fill_bytes(v: &mut [u8]) { if getentropy_fill_bytes(v) { return; } // for older macos which doesn't support getentropy let mut file = File::open("/dev/urandom").expect("failed to open /dev/urandom"); file.read_exact(v).expect("failed to read /dev/urandom") } } #[cfg(any(target_os = "openbsd", target_os = "emscripten"))] mod imp { use crate::sys::os::errno; pub fn fill_bytes(v: &mut [u8]) { // getentropy(2) permits a maximum buffer size of 256 bytes for s in v.chunks_mut(256) { let ret = unsafe { libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len()) }; if ret == -1 { panic!("unexpected getentropy error: {}", errno()); } } } } // On iOS and MacOS `SecRandomCopyBytes` calls `CCRandomCopyBytes` with // `kCCRandomDefault`. `CCRandomCopyBytes` manages a CSPRNG which is seeded // from `/dev/random` and which runs on its own thread accessed via GCD. // This seems needlessly heavyweight for the purposes of generating two u64s // once per thread in `hashmap_random_keys`. Therefore `SecRandomCopyBytes` is // only used on iOS where direct access to `/dev/urandom` is blocked by the // sandbox. #[cfg(any(target_os = "ios", target_os = "watchos"))] mod imp { use crate::io; use crate::ptr; use libc::{c_int, size_t}; enum SecRandom {} #[allow(non_upper_case_globals)] const kSecRandomDefault: *const SecRandom = ptr::null(); extern "C" { fn SecRandomCopyBytes(rnd: *const SecRandom, count: size_t, bytes: *mut u8) -> c_int; } pub fn fill_bytes(v: &mut [u8]) { let ret = unsafe { SecRandomCopyBytes(kSecRandomDefault, v.len(), v.as_mut_ptr()) }; if ret == -1 { panic!("couldn't generate random bytes: {}", io::Error::last_os_error()); } } } #[cfg(any(target_os = "freebsd", target_os = "netbsd"))] mod imp { use crate::ptr; pub fn fill_bytes(v: &mut [u8]) { let mib = [libc::CTL_KERN, libc::KERN_ARND]; // kern.arandom permits a maximum buffer size of 256 bytes for s in v.chunks_mut(256) { let mut s_len = s.len(); let ret = unsafe { libc::sysctl( mib.as_ptr(), mib.len() as libc::c_uint, s.as_mut_ptr() as *mut _, &mut s_len, ptr::null(), 0, ) }; if ret == -1 || s_len != s.len() { panic!( "kern.arandom sysctl failed! (returned {}, s.len() {}, oldlenp {})", ret, s.len(), s_len ); } } } } #[cfg(target_os = "fuchsia")] mod imp { #[link(name = "zircon")] extern "C" { fn zx_cprng_draw(buffer: *mut u8, len: usize); } pub fn fill_bytes(v: &mut [u8]) { unsafe { zx_cprng_draw(v.as_mut_ptr(), v.len()) } } } #[cfg(target_os = "redox")] mod imp { use crate::fs::File; use crate::io::Read; pub fn fill_bytes(v: &mut [u8]) { // Open rand:, read from it, and close it again. let mut file = File::open("rand:").expect("failed to open rand:"); file.read_exact(v).expect("failed to read rand:") } } #[cfg(target_os = "vxworks")] mod imp { use crate::io; use core::sync::atomic::{AtomicBool, Ordering::Relaxed}; pub fn fill_bytes(v: &mut [u8]) { static RNG_INIT: AtomicBool = AtomicBool::new(false); while !RNG_INIT.load(Relaxed) { let ret = unsafe { libc::randSecure() }; if ret < 0 { panic!("couldn't generate random bytes: {}", io::Error::last_os_error()); } else if ret > 0 { RNG_INIT.store(true, Relaxed); break; } unsafe { libc::usleep(10) }; } let ret = unsafe { libc::randABytes(v.as_mut_ptr() as *mut libc::c_uchar, v.len() as libc::c_int) }; if ret < 0 { panic!("couldn't generate random bytes: {}", io::Error::last_os_error()); } } }