#![allow(missing_docs, nonstandard_style)] use crate::ffi::{CStr, OsStr, OsString}; use crate::io::ErrorKind; use crate::mem::MaybeUninit; use crate::os::windows::ffi::{OsStrExt, OsStringExt}; use crate::path::PathBuf; use crate::time::Duration; pub use self::rand::hashmap_random_keys; #[macro_use] pub mod compat; pub mod alloc; pub mod args; pub mod c; pub mod cmath; pub mod env; pub mod fs; pub mod handle; pub mod io; pub mod locks; pub mod memchr; pub mod net; pub mod os; pub mod os_str; pub mod path; pub mod pipe; pub mod process; pub mod rand; pub mod stdio; pub mod thread; pub mod thread_local_dtor; pub mod thread_local_key; pub mod thread_parking; pub mod time; cfg_if::cfg_if! { if #[cfg(not(target_vendor = "uwp"))] { pub mod stack_overflow; } else { pub mod stack_overflow_uwp; pub use self::stack_overflow_uwp as stack_overflow; } } // SAFETY: must be called only once during runtime initialization. // NOTE: this is not guaranteed to run, for example when Rust code is called externally. pub unsafe fn init(_argc: isize, _argv: *const *const u8, _sigpipe: u8) { stack_overflow::init(); // Normally, `thread::spawn` will call `Thread::set_name` but since this thread already // exists, we have to call it ourselves. thread::Thread::set_name(&CStr::from_bytes_with_nul_unchecked(b"main\0")); } // SAFETY: must be called only once during runtime cleanup. // NOTE: this is not guaranteed to run, for example when the program aborts. pub unsafe fn cleanup() { net::cleanup(); } pub fn decode_error_kind(errno: i32) -> ErrorKind { use ErrorKind::*; match errno as c::DWORD { c::ERROR_ACCESS_DENIED => return PermissionDenied, c::ERROR_ALREADY_EXISTS => return AlreadyExists, c::ERROR_FILE_EXISTS => return AlreadyExists, c::ERROR_BROKEN_PIPE => return BrokenPipe, c::ERROR_FILE_NOT_FOUND => return NotFound, c::ERROR_PATH_NOT_FOUND => return NotFound, c::ERROR_NO_DATA => return BrokenPipe, c::ERROR_INVALID_NAME => return InvalidFilename, c::ERROR_INVALID_PARAMETER => return InvalidInput, c::ERROR_NOT_ENOUGH_MEMORY | c::ERROR_OUTOFMEMORY => return OutOfMemory, c::ERROR_SEM_TIMEOUT | c::WAIT_TIMEOUT | c::ERROR_DRIVER_CANCEL_TIMEOUT | c::ERROR_OPERATION_ABORTED | c::ERROR_SERVICE_REQUEST_TIMEOUT | c::ERROR_COUNTER_TIMEOUT | c::ERROR_TIMEOUT | c::ERROR_RESOURCE_CALL_TIMED_OUT | c::ERROR_CTX_MODEM_RESPONSE_TIMEOUT | c::ERROR_CTX_CLIENT_QUERY_TIMEOUT | c::FRS_ERR_SYSVOL_POPULATE_TIMEOUT | c::ERROR_DS_TIMELIMIT_EXCEEDED | c::DNS_ERROR_RECORD_TIMED_OUT | c::ERROR_IPSEC_IKE_TIMED_OUT | c::ERROR_RUNLEVEL_SWITCH_TIMEOUT | c::ERROR_RUNLEVEL_SWITCH_AGENT_TIMEOUT => return TimedOut, c::ERROR_CALL_NOT_IMPLEMENTED => return Unsupported, c::ERROR_HOST_UNREACHABLE => return HostUnreachable, c::ERROR_NETWORK_UNREACHABLE => return NetworkUnreachable, c::ERROR_DIRECTORY => return NotADirectory, c::ERROR_DIRECTORY_NOT_SUPPORTED => return IsADirectory, c::ERROR_DIR_NOT_EMPTY => return DirectoryNotEmpty, c::ERROR_WRITE_PROTECT => return ReadOnlyFilesystem, c::ERROR_DISK_FULL | c::ERROR_HANDLE_DISK_FULL => return StorageFull, c::ERROR_SEEK_ON_DEVICE => return NotSeekable, c::ERROR_DISK_QUOTA_EXCEEDED => return FilesystemQuotaExceeded, c::ERROR_FILE_TOO_LARGE => return FileTooLarge, c::ERROR_BUSY => return ResourceBusy, c::ERROR_POSSIBLE_DEADLOCK => return Deadlock, c::ERROR_NOT_SAME_DEVICE => return CrossesDevices, c::ERROR_TOO_MANY_LINKS => return TooManyLinks, c::ERROR_FILENAME_EXCED_RANGE => return InvalidFilename, _ => {} } match errno { c::WSAEACCES => PermissionDenied, c::WSAEADDRINUSE => AddrInUse, c::WSAEADDRNOTAVAIL => AddrNotAvailable, c::WSAECONNABORTED => ConnectionAborted, c::WSAECONNREFUSED => ConnectionRefused, c::WSAECONNRESET => ConnectionReset, c::WSAEINVAL => InvalidInput, c::WSAENOTCONN => NotConnected, c::WSAEWOULDBLOCK => WouldBlock, c::WSAETIMEDOUT => TimedOut, c::WSAEHOSTUNREACH => HostUnreachable, c::WSAENETDOWN => NetworkDown, c::WSAENETUNREACH => NetworkUnreachable, _ => Uncategorized, } } pub fn unrolled_find_u16s(needle: u16, haystack: &[u16]) -> Option { let ptr = haystack.as_ptr(); let mut start = &haystack[..]; // For performance reasons unfold the loop eight times. while start.len() >= 8 { macro_rules! if_return { ($($n:literal,)+) => { $( if start[$n] == needle { return Some(((&start[$n] as *const u16).addr() - ptr.addr()) / 2); } )+ } } if_return!(0, 1, 2, 3, 4, 5, 6, 7,); start = &start[8..]; } for c in start { if *c == needle { return Some(((c as *const u16).addr() - ptr.addr()) / 2); } } None } pub fn to_u16s>(s: S) -> crate::io::Result> { fn inner(s: &OsStr) -> crate::io::Result> { // Most paths are ASCII, so reserve capacity for as much as there are bytes // in the OsStr plus one for the null-terminating character. We are not // wasting bytes here as paths created by this function are primarily used // in an ephemeral fashion. let mut maybe_result = Vec::with_capacity(s.len() + 1); maybe_result.extend(s.encode_wide()); if unrolled_find_u16s(0, &maybe_result).is_some() { return Err(crate::io::const_io_error!( ErrorKind::InvalidInput, "strings passed to WinAPI cannot contain NULs", )); } maybe_result.push(0); Ok(maybe_result) } inner(s.as_ref()) } // Many Windows APIs follow a pattern of where we hand a buffer and then they // will report back to us how large the buffer should be or how many bytes // currently reside in the buffer. This function is an abstraction over these // functions by making them easier to call. // // The first callback, `f1`, is yielded a (pointer, len) pair which can be // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case). // The closure is expected to return what the syscall returns which will be // interpreted by this function to determine if the syscall needs to be invoked // again (with more buffer space). // // Once the syscall has completed (errors bail out early) the second closure is // yielded the data which has been read from the syscall. The return value // from this closure is then the return value of the function. fn fill_utf16_buf(mut f1: F1, f2: F2) -> crate::io::Result where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD, F2: FnOnce(&[u16]) -> T, { // Start off with a stack buf but then spill over to the heap if we end up // needing more space. // // This initial size also works around `GetFullPathNameW` returning // incorrect size hints for some short paths: // https://github.com/dylni/normpath/issues/5 let mut stack_buf: [MaybeUninit; 512] = MaybeUninit::uninit_array(); let mut heap_buf: Vec> = Vec::new(); unsafe { let mut n = stack_buf.len(); loop { let buf = if n <= stack_buf.len() { &mut stack_buf[..] } else { let extra = n - heap_buf.len(); heap_buf.reserve(extra); // We used `reserve` and not `reserve_exact`, so in theory we // may have gotten more than requested. If so, we'd like to use // it... so long as we won't cause overflow. n = heap_buf.capacity().min(c::DWORD::MAX as usize); // Safety: MaybeUninit does not need initialization heap_buf.set_len(n); &mut heap_buf[..] }; // This function is typically called on windows API functions which // will return the correct length of the string, but these functions // also return the `0` on error. In some cases, however, the // returned "correct length" may actually be 0! // // To handle this case we call `SetLastError` to reset it to 0 and // then check it again if we get the "0 error value". If the "last // error" is still 0 then we interpret it as a 0 length buffer and // not an actual error. c::SetLastError(0); let k = match f1(buf.as_mut_ptr().cast::(), n as c::DWORD) { 0 if c::GetLastError() == 0 => 0, 0 => return Err(crate::io::Error::last_os_error()), n => n, } as usize; if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER { n = n.saturating_mul(2).min(c::DWORD::MAX as usize); } else if k > n { n = k; } else if k == n { // It is impossible to reach this point. // On success, k is the returned string length excluding the null. // On failure, k is the required buffer length including the null. // Therefore k never equals n. unreachable!(); } else { // Safety: First `k` values are initialized. let slice: &[u16] = MaybeUninit::slice_assume_init_ref(&buf[..k]); return Ok(f2(slice)); } } } } fn os2path(s: &[u16]) -> PathBuf { PathBuf::from(OsString::from_wide(s)) } pub fn truncate_utf16_at_nul(v: &[u16]) -> &[u16] { match unrolled_find_u16s(0, v) { // don't include the 0 Some(i) => &v[..i], None => v, } } pub trait IsZero { fn is_zero(&self) -> bool; } macro_rules! impl_is_zero { ($($t:ident)*) => ($(impl IsZero for $t { fn is_zero(&self) -> bool { *self == 0 } })*) } impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize } pub fn cvt(i: I) -> crate::io::Result { if i.is_zero() { Err(crate::io::Error::last_os_error()) } else { Ok(i) } } pub fn dur2timeout(dur: Duration) -> c::DWORD { // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the // timeouts in windows APIs are typically u32 milliseconds. To translate, we // have two pieces to take care of: // // * Nanosecond precision is rounded up // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE // (never time out). dur.as_secs() .checked_mul(1000) .and_then(|ms| ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000)) .and_then(|ms| ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 { 1 } else { 0 })) .map(|ms| if ms > ::MAX as u64 { c::INFINITE } else { ms as c::DWORD }) .unwrap_or(c::INFINITE) } /// Use `__fastfail` to abort the process /// /// This is the same implementation as in libpanic_abort's `__rust_start_panic`. See /// that function for more information on `__fastfail` #[allow(unreachable_code)] pub fn abort_internal() -> ! { #[allow(unused)] const FAST_FAIL_FATAL_APP_EXIT: usize = 7; #[cfg(not(miri))] // inline assembly does not work in Miri unsafe { cfg_if::cfg_if! { if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] { core::arch::asm!("int $$0x29", in("ecx") FAST_FAIL_FATAL_APP_EXIT); crate::intrinsics::unreachable(); } else if #[cfg(all(target_arch = "arm", target_feature = "thumb-mode"))] { core::arch::asm!(".inst 0xDEFB", in("r0") FAST_FAIL_FATAL_APP_EXIT); crate::intrinsics::unreachable(); } else if #[cfg(target_arch = "aarch64")] { core::arch::asm!("brk 0xF003", in("x0") FAST_FAIL_FATAL_APP_EXIT); crate::intrinsics::unreachable(); } } } crate::intrinsics::abort(); } /// Align the inner value to 8 bytes. /// /// This is enough for almost all of the buffers we're likely to work with in /// the Windows APIs we use. #[repr(C, align(8))] #[derive(Copy, Clone)] pub(crate) struct Align8(pub T);