//! Bit Manipulation Instruction (BMI) Set 1.0. //! //! The reference is [Intel 64 and IA-32 Architectures Software Developer's //! Manual Volume 2: Instruction Set Reference, A-Z][intel64_ref]. //! //! [Wikipedia][wikipedia_bmi] provides a quick overview of the instructions //! available. //! //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf //! [wikipedia_bmi]: https://en.wikipedia.org/wiki/Bit_Manipulation_Instruction_Sets#ABM_.28Advanced_Bit_Manipulation.29 #[cfg(test)] use stdarch_test::assert_instr; /// Extracts bits in range [`start`, `start` + `length`) from `a` into /// the least significant bits of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_bextr_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(bextr))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _bextr_u32(a: u32, start: u32, len: u32) -> u32 { _bextr2_u32(a, (start & 0xff_u32) | ((len & 0xff_u32) << 8_u32)) } /// Extracts bits of `a` specified by `control` into /// the least significant bits of the result. /// /// Bits `[7,0]` of `control` specify the index to the first bit in the range /// to be extracted, and bits `[15,8]` specify the length of the range. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_bextr2_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(bextr))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _bextr2_u32(a: u32, control: u32) -> u32 { x86_bmi_bextr_32(a, control) } /// Bitwise logical `AND` of inverted `a` with `b`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_andn_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(andn))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _andn_u32(a: u32, b: u32) -> u32 { !a & b } /// Extracts lowest set isolated bit. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_blsi_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(blsi))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _blsi_u32(x: u32) -> u32 { x & x.wrapping_neg() } /// Gets mask up to lowest set bit. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_blsmsk_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(blsmsk))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _blsmsk_u32(x: u32) -> u32 { x ^ (x.wrapping_sub(1_u32)) } /// Resets the lowest set bit of `x`. /// /// If `x` is sets CF. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_blsr_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(blsr))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _blsr_u32(x: u32) -> u32 { x & (x.wrapping_sub(1)) } /// Counts the number of trailing least significant zero bits. /// /// When the source operand is `0`, it returns its size in bits. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_tzcnt_u32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(tzcnt))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _tzcnt_u32(x: u32) -> u32 { x.trailing_zeros() } /// Counts the number of trailing least significant zero bits. /// /// When the source operand is `0`, it returns its size in bits. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_tzcnt_32) #[inline] #[target_feature(enable = "bmi1")] #[cfg_attr(test, assert_instr(tzcnt))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_tzcnt_32(x: u32) -> i32 { x.trailing_zeros() as i32 } extern "C" { #[link_name = "llvm.x86.bmi.bextr.32"] fn x86_bmi_bextr_32(x: u32, y: u32) -> u32; } #[cfg(test)] mod tests { use stdarch_test::simd_test; use crate::core_arch::x86::*; #[simd_test(enable = "bmi1")] unsafe fn test_bextr_u32() { let r = _bextr_u32(0b0101_0000u32, 4, 4); assert_eq!(r, 0b0000_0101u32); } #[simd_test(enable = "bmi1")] unsafe fn test_andn_u32() { assert_eq!(_andn_u32(0, 0), 0); assert_eq!(_andn_u32(0, 1), 1); assert_eq!(_andn_u32(1, 0), 0); assert_eq!(_andn_u32(1, 1), 0); let r = _andn_u32(0b0000_0000u32, 0b0000_0000u32); assert_eq!(r, 0b0000_0000u32); let r = _andn_u32(0b0000_0000u32, 0b1111_1111u32); assert_eq!(r, 0b1111_1111u32); let r = _andn_u32(0b1111_1111u32, 0b0000_0000u32); assert_eq!(r, 0b0000_0000u32); let r = _andn_u32(0b1111_1111u32, 0b1111_1111u32); assert_eq!(r, 0b0000_0000u32); let r = _andn_u32(0b0100_0000u32, 0b0101_1101u32); assert_eq!(r, 0b0001_1101u32); } #[simd_test(enable = "bmi1")] unsafe fn test_blsi_u32() { assert_eq!(_blsi_u32(0b1101_0000u32), 0b0001_0000u32); } #[simd_test(enable = "bmi1")] unsafe fn test_blsmsk_u32() { let r = _blsmsk_u32(0b0011_0000u32); assert_eq!(r, 0b0001_1111u32); } #[simd_test(enable = "bmi1")] unsafe fn test_blsr_u32() { // TODO: test the behavior when the input is `0`. let r = _blsr_u32(0b0011_0000u32); assert_eq!(r, 0b0010_0000u32); } #[simd_test(enable = "bmi1")] unsafe fn test_tzcnt_u32() { assert_eq!(_tzcnt_u32(0b0000_0001u32), 0u32); assert_eq!(_tzcnt_u32(0b0000_0000u32), 32u32); assert_eq!(_tzcnt_u32(0b1001_0000u32), 4u32); } }