//! Fused Multiply-Add instruction set (FMA) //! //! The FMA instruction set is an extension to the 128 and 256-bit SSE //! instructions in the x86 microprocessor instruction set to perform fused //! multiply–add (FMA) operations. //! //! The references are: //! //! - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2: //! Instruction Set Reference, A-Z][intel64_ref]. //! - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and //! System Instructions][amd64_ref]. //! //! Wikipedia's [FMA][wiki_fma] page provides a quick overview of the //! instructions available. //! //! [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf //! [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf //! [wiki_fma]: https://en.wikipedia.org/wiki/Fused_multiply-accumulate use crate::core_arch::simd_llvm::simd_fma; use crate::core_arch::x86::*; #[cfg(test)] use stdarch_test::assert_instr; /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and add the intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmadd_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { simd_fma(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and add the intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmadd_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmadd_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { simd_fma(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and add the intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmadd_ps(a: __m128, b: __m128, c: __m128) -> __m128 { simd_fma(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and add the intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmadd_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmadd_ps(a: __m256, b: __m256, c: __m256) -> __m256 { simd_fma(a, b, c) } /// Multiplies the lower double-precision (64-bit) floating-point elements in /// `a` and `b`, and add the intermediate result to the lower element in `c`. /// Stores the result in the lower element of the returned value, and copy the /// upper element from `a` to the upper elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_sd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmadd_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfmaddsd(a, b, c) } /// Multiplies the lower single-precision (32-bit) floating-point elements in /// `a` and `b`, and add the intermediate result to the lower element in `c`. /// Stores the result in the lower element of the returned value, and copy the /// 3 upper elements from `a` to the upper elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmadd_ss) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmadd_ss(a: __m128, b: __m128, c: __m128) -> __m128 { vfmaddss(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and alternatively add and subtract packed elements in `c` to/from /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmaddsub_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmaddsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmaddsub_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfmaddsubpd(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and alternatively add and subtract packed elements in `c` to/from /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmaddsub_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmaddsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmaddsub_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { vfmaddsubpd256(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and alternatively add and subtract packed elements in `c` to/from /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmaddsub_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmaddsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmaddsub_ps(a: __m128, b: __m128, c: __m128) -> __m128 { vfmaddsubps(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and alternatively add and subtract packed elements in `c` to/from /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmaddsub_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmaddsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmaddsub_ps(a: __m256, b: __m256, c: __m256) -> __m256 { vfmaddsubps256(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmsub_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfmsubpd(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmsub_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmsub_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { vfmsubpd256(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsub213ps))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmsub_ps(a: __m128, b: __m128, c: __m128) -> __m128 { vfmsubps(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmsub_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsub213ps))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmsub_ps(a: __m256, b: __m256, c: __m256) -> __m256 { vfmsubps256(a, b, c) } /// Multiplies the lower double-precision (64-bit) floating-point elements in /// `a` and `b`, and subtract the lower element in `c` from the intermediate /// result. Store the result in the lower element of the returned value, and /// copy the upper element from `a` to the upper elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_sd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmsub_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfmsubsd(a, b, c) } /// Multiplies the lower single-precision (32-bit) floating-point elements in /// `a` and `b`, and subtract the lower element in `c` from the intermediate /// result. Store the result in the lower element of the returned value, and /// copy the 3 upper elements from `a` to the upper elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsub_ss) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmsub_ss(a: __m128, b: __m128, c: __m128) -> __m128 { vfmsubss(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and alternatively subtract and add packed elements in `c` from/to /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsubadd_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsubadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmsubadd_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfmsubaddpd(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and alternatively subtract and add packed elements in `c` from/to /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmsubadd_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsubadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmsubadd_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { vfmsubaddpd256(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and alternatively subtract and add packed elements in `c` from/to /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fmsubadd_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsubadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fmsubadd_ps(a: __m128, b: __m128, c: __m128) -> __m128 { vfmsubaddps(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and alternatively subtract and add packed elements in `c` from/to /// the intermediate result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fmsubadd_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfmsubadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fmsubadd_ps(a: __m256, b: __m256, c: __m256) -> __m256 { vfmsubaddps256(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and add the negated intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmadd_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfnmaddpd(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and add the negated intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fnmadd_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fnmadd_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { vfnmaddpd256(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and add the negated intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmadd_ps(a: __m128, b: __m128, c: __m128) -> __m128 { vfnmaddps(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and add the negated intermediate result to packed elements in `c`. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fnmadd_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fnmadd_ps(a: __m256, b: __m256, c: __m256) -> __m256 { vfnmaddps256(a, b, c) } /// Multiplies the lower double-precision (64-bit) floating-point elements in /// `a` and `b`, and add the negated intermediate result to the lower element /// in `c`. Store the result in the lower element of the returned value, and /// copy the upper element from `a` to the upper elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_sd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmadd_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfnmaddsd(a, b, c) } /// Multiplies the lower single-precision (32-bit) floating-point elements in /// `a` and `b`, and add the negated intermediate result to the lower element /// in `c`. Store the result in the lower element of the returned value, and /// copy the 3 upper elements from `a` to the upper elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmadd_ss) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmadd))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmadd_ss(a: __m128, b: __m128, c: __m128) -> __m128 { vfnmaddss(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the negated intermediate /// result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmsub_pd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfnmsubpd(a, b, c) } /// Multiplies packed double-precision (64-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the negated intermediate /// result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fnmsub_pd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fnmsub_pd(a: __m256d, b: __m256d, c: __m256d) -> __m256d { vfnmsubpd256(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the negated intermediate /// result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmsub_ps(a: __m128, b: __m128, c: __m128) -> __m128 { vfnmsubps(a, b, c) } /// Multiplies packed single-precision (32-bit) floating-point elements in `a` /// and `b`, and subtract packed elements in `c` from the negated intermediate /// result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_fnmsub_ps) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm256_fnmsub_ps(a: __m256, b: __m256, c: __m256) -> __m256 { vfnmsubps256(a, b, c) } /// Multiplies the lower double-precision (64-bit) floating-point elements in /// `a` and `b`, and subtract packed elements in `c` from the negated /// intermediate result. Store the result in the lower element of the returned /// value, and copy the upper element from `a` to the upper elements of the /// result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_sd) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmsub_sd(a: __m128d, b: __m128d, c: __m128d) -> __m128d { vfnmsubsd(a, b, c) } /// Multiplies the lower single-precision (32-bit) floating-point elements in /// `a` and `b`, and subtract packed elements in `c` from the negated /// intermediate result. Store the result in the lower element of the /// returned value, and copy the 3 upper elements from `a` to the upper /// elements of the result. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_fnmsub_ss) #[inline] #[target_feature(enable = "fma")] #[cfg_attr(test, assert_instr(vfnmsub))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _mm_fnmsub_ss(a: __m128, b: __m128, c: __m128) -> __m128 { vfnmsubss(a, b, c) } #[allow(improper_ctypes)] extern "C" { #[link_name = "llvm.x86.fma.vfmadd.sd"] fn vfmaddsd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfmadd.ss"] fn vfmaddss(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfmaddsub.pd"] fn vfmaddsubpd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfmaddsub.pd.256"] fn vfmaddsubpd256(a: __m256d, b: __m256d, c: __m256d) -> __m256d; #[link_name = "llvm.x86.fma.vfmaddsub.ps"] fn vfmaddsubps(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfmaddsub.ps.256"] fn vfmaddsubps256(a: __m256, b: __m256, c: __m256) -> __m256; #[link_name = "llvm.x86.fma.vfmsub.pd"] fn vfmsubpd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfmsub.pd.256"] fn vfmsubpd256(a: __m256d, b: __m256d, c: __m256d) -> __m256d; #[link_name = "llvm.x86.fma.vfmsub.ps"] fn vfmsubps(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfmsub.ps.256"] fn vfmsubps256(a: __m256, b: __m256, c: __m256) -> __m256; #[link_name = "llvm.x86.fma.vfmsub.sd"] fn vfmsubsd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfmsub.ss"] fn vfmsubss(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfmsubadd.pd"] fn vfmsubaddpd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfmsubadd.pd.256"] fn vfmsubaddpd256(a: __m256d, b: __m256d, c: __m256d) -> __m256d; #[link_name = "llvm.x86.fma.vfmsubadd.ps"] fn vfmsubaddps(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfmsubadd.ps.256"] fn vfmsubaddps256(a: __m256, b: __m256, c: __m256) -> __m256; #[link_name = "llvm.x86.fma.vfnmadd.pd"] fn vfnmaddpd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfnmadd.pd.256"] fn vfnmaddpd256(a: __m256d, b: __m256d, c: __m256d) -> __m256d; #[link_name = "llvm.x86.fma.vfnmadd.ps"] fn vfnmaddps(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfnmadd.ps.256"] fn vfnmaddps256(a: __m256, b: __m256, c: __m256) -> __m256; #[link_name = "llvm.x86.fma.vfnmadd.sd"] fn vfnmaddsd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfnmadd.ss"] fn vfnmaddss(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfnmsub.pd"] fn vfnmsubpd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfnmsub.pd.256"] fn vfnmsubpd256(a: __m256d, b: __m256d, c: __m256d) -> __m256d; #[link_name = "llvm.x86.fma.vfnmsub.ps"] fn vfnmsubps(a: __m128, b: __m128, c: __m128) -> __m128; #[link_name = "llvm.x86.fma.vfnmsub.ps.256"] fn vfnmsubps256(a: __m256, b: __m256, c: __m256) -> __m256; #[link_name = "llvm.x86.fma.vfnmsub.sd"] fn vfnmsubsd(a: __m128d, b: __m128d, c: __m128d) -> __m128d; #[link_name = "llvm.x86.fma.vfnmsub.ss"] fn vfnmsubss(a: __m128, b: __m128, c: __m128) -> __m128; } #[cfg(test)] mod tests { use stdarch_test::simd_test; use crate::core_arch::x86::*; #[simd_test(enable = "fma")] unsafe fn test_mm_fmadd_pd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(9., 15.); assert_eq_m128d(_mm_fmadd_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmadd_pd() { let a = _mm256_setr_pd(1., 2., 3., 4.); let b = _mm256_setr_pd(5., 3., 7., 2.); let c = _mm256_setr_pd(4., 9., 1., 7.); let r = _mm256_setr_pd(9., 15., 22., 15.); assert_eq_m256d(_mm256_fmadd_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmadd_ps() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(9., 15., 22., 15.); assert_eq_m128(_mm_fmadd_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmadd_ps() { let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); let r = _mm256_setr_ps(9., 15., 22., 15., -5., -49., -2., -31.); assert_eq_m256(_mm256_fmadd_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmadd_sd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(9., 2.); assert_eq_m128d(_mm_fmadd_sd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmadd_ss() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(9., 2., 3., 4.); assert_eq_m128(_mm_fmadd_ss(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmaddsub_pd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(1., 15.); assert_eq_m128d(_mm_fmaddsub_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmaddsub_pd() { let a = _mm256_setr_pd(1., 2., 3., 4.); let b = _mm256_setr_pd(5., 3., 7., 2.); let c = _mm256_setr_pd(4., 9., 1., 7.); let r = _mm256_setr_pd(1., 15., 20., 15.); assert_eq_m256d(_mm256_fmaddsub_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmaddsub_ps() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(1., 15., 20., 15.); assert_eq_m128(_mm_fmaddsub_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmaddsub_ps() { let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); let r = _mm256_setr_ps(1., 15., 20., 15., 5., -49., 2., -31.); assert_eq_m256(_mm256_fmaddsub_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmsub_pd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(1., -3.); assert_eq_m128d(_mm_fmsub_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmsub_pd() { let a = _mm256_setr_pd(1., 2., 3., 4.); let b = _mm256_setr_pd(5., 3., 7., 2.); let c = _mm256_setr_pd(4., 9., 1., 7.); let r = _mm256_setr_pd(1., -3., 20., 1.); assert_eq_m256d(_mm256_fmsub_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmsub_ps() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(1., -3., 20., 1.); assert_eq_m128(_mm_fmsub_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmsub_ps() { let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); let r = _mm256_setr_ps(1., -3., 20., 1., 5., -71., 2., -25.); assert_eq_m256(_mm256_fmsub_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmsub_sd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(1., 2.); assert_eq_m128d(_mm_fmsub_sd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmsub_ss() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(1., 2., 3., 4.); assert_eq_m128(_mm_fmsub_ss(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmsubadd_pd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(9., -3.); assert_eq_m128d(_mm_fmsubadd_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmsubadd_pd() { let a = _mm256_setr_pd(1., 2., 3., 4.); let b = _mm256_setr_pd(5., 3., 7., 2.); let c = _mm256_setr_pd(4., 9., 1., 7.); let r = _mm256_setr_pd(9., -3., 22., 1.); assert_eq_m256d(_mm256_fmsubadd_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fmsubadd_ps() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(9., -3., 22., 1.); assert_eq_m128(_mm_fmsubadd_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fmsubadd_ps() { let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); let r = _mm256_setr_ps(9., -3., 22., 1., -5., -71., -2., -25.); assert_eq_m256(_mm256_fmsubadd_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmadd_pd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(-1., 3.); assert_eq_m128d(_mm_fnmadd_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fnmadd_pd() { let a = _mm256_setr_pd(1., 2., 3., 4.); let b = _mm256_setr_pd(5., 3., 7., 2.); let c = _mm256_setr_pd(4., 9., 1., 7.); let r = _mm256_setr_pd(-1., 3., -20., -1.); assert_eq_m256d(_mm256_fnmadd_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmadd_ps() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(-1., 3., -20., -1.); assert_eq_m128(_mm_fnmadd_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fnmadd_ps() { let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); let r = _mm256_setr_ps(-1., 3., -20., -1., -5., 71., -2., 25.); assert_eq_m256(_mm256_fnmadd_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmadd_sd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(-1., 2.); assert_eq_m128d(_mm_fnmadd_sd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmadd_ss() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(-1., 2., 3., 4.); assert_eq_m128(_mm_fnmadd_ss(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmsub_pd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(-9., -15.); assert_eq_m128d(_mm_fnmsub_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fnmsub_pd() { let a = _mm256_setr_pd(1., 2., 3., 4.); let b = _mm256_setr_pd(5., 3., 7., 2.); let c = _mm256_setr_pd(4., 9., 1., 7.); let r = _mm256_setr_pd(-9., -15., -22., -15.); assert_eq_m256d(_mm256_fnmsub_pd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmsub_ps() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(-9., -15., -22., -15.); assert_eq_m128(_mm_fnmsub_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm256_fnmsub_ps() { let a = _mm256_setr_ps(1., 2., 3., 4., 0., 10., -1., -2.); let b = _mm256_setr_ps(5., 3., 7., 2., 4., -6., 0., 14.); let c = _mm256_setr_ps(4., 9., 1., 7., -5., 11., -2., -3.); let r = _mm256_setr_ps(-9., -15., -22., -15., 5., 49., 2., 31.); assert_eq_m256(_mm256_fnmsub_ps(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmsub_sd() { let a = _mm_setr_pd(1., 2.); let b = _mm_setr_pd(5., 3.); let c = _mm_setr_pd(4., 9.); let r = _mm_setr_pd(-9., 2.); assert_eq_m128d(_mm_fnmsub_sd(a, b, c), r); } #[simd_test(enable = "fma")] unsafe fn test_mm_fnmsub_ss() { let a = _mm_setr_ps(1., 2., 3., 4.); let b = _mm_setr_ps(5., 3., 7., 2.); let c = _mm_setr_ps(4., 9., 1., 7.); let r = _mm_setr_ps(-9., 2., 3., 4.); assert_eq_m128(_mm_fnmsub_ss(a, b, c), r); } }