//! `x86_64`'s `xsave` and `xsaveopt` target feature intrinsics #![allow(clippy::module_name_repetitions)] #[cfg(test)] use stdarch_test::assert_instr; #[allow(improper_ctypes)] extern "C" { #[link_name = "llvm.x86.xsave64"] fn xsave64(p: *mut u8, hi: u32, lo: u32); #[link_name = "llvm.x86.xrstor64"] fn xrstor64(p: *const u8, hi: u32, lo: u32); #[link_name = "llvm.x86.xsaveopt64"] fn xsaveopt64(p: *mut u8, hi: u32, lo: u32); #[link_name = "llvm.x86.xsavec64"] fn xsavec64(p: *mut u8, hi: u32, lo: u32); #[link_name = "llvm.x86.xsaves64"] fn xsaves64(p: *mut u8, hi: u32, lo: u32); #[link_name = "llvm.x86.xrstors64"] fn xrstors64(p: *const u8, hi: u32, lo: u32); } /// Performs a full or partial save of the enabled processor states to memory at /// `mem_addr`. /// /// State is saved based on bits `[62:0]` in `save_mask` and XCR0. /// `mem_addr` must be aligned on a 64-byte boundary. /// /// The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of /// Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_xsave64) #[inline] #[target_feature(enable = "xsave")] #[cfg_attr(test, assert_instr(xsave64))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _xsave64(mem_addr: *mut u8, save_mask: u64) { xsave64(mem_addr, (save_mask >> 32) as u32, save_mask as u32); } /// Performs a full or partial restore of the enabled processor states using /// the state information stored in memory at `mem_addr`. /// /// State is restored based on bits `[62:0]` in `rs_mask`, `XCR0`, and /// `mem_addr.HEADER.XSTATE_BV`. `mem_addr` must be aligned on a 64-byte /// boundary. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_xrstor64) #[inline] #[target_feature(enable = "xsave")] #[cfg_attr(test, assert_instr(xrstor64))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _xrstor64(mem_addr: *const u8, rs_mask: u64) { xrstor64(mem_addr, (rs_mask >> 32) as u32, rs_mask as u32); } /// Performs a full or partial save of the enabled processor states to memory at /// `mem_addr`. /// /// State is saved based on bits `[62:0]` in `save_mask` and `XCR0`. /// `mem_addr` must be aligned on a 64-byte boundary. The hardware may optimize /// the manner in which data is saved. The performance of this instruction will /// be equal to or better than using the `XSAVE64` instruction. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_xsaveopt64) #[inline] #[target_feature(enable = "xsave,xsaveopt")] #[cfg_attr(test, assert_instr(xsaveopt64))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _xsaveopt64(mem_addr: *mut u8, save_mask: u64) { xsaveopt64(mem_addr, (save_mask >> 32) as u32, save_mask as u32); } /// Performs a full or partial save of the enabled processor states to memory /// at `mem_addr`. /// /// `xsavec` differs from `xsave` in that it uses compaction and that it may /// use init optimization. State is saved based on bits `[62:0]` in `save_mask` /// and `XCR0`. `mem_addr` must be aligned on a 64-byte boundary. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_xsavec64) #[inline] #[target_feature(enable = "xsave,xsavec")] #[cfg_attr(test, assert_instr(xsavec64))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _xsavec64(mem_addr: *mut u8, save_mask: u64) { xsavec64(mem_addr, (save_mask >> 32) as u32, save_mask as u32); } /// Performs a full or partial save of the enabled processor states to memory at /// `mem_addr` /// /// `xsaves` differs from xsave in that it can save state components /// corresponding to bits set in `IA32_XSS` `MSR` and that it may use the /// modified optimization. State is saved based on bits `[62:0]` in `save_mask` /// and `XCR0`. `mem_addr` must be aligned on a 64-byte boundary. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_xsaves64) #[inline] #[target_feature(enable = "xsave,xsaves")] #[cfg_attr(test, assert_instr(xsaves64))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _xsaves64(mem_addr: *mut u8, save_mask: u64) { xsaves64(mem_addr, (save_mask >> 32) as u32, save_mask as u32); } /// Performs a full or partial restore of the enabled processor states using the /// state information stored in memory at `mem_addr`. /// /// `xrstors` differs from `xrstor` in that it can restore state components /// corresponding to bits set in the `IA32_XSS` `MSR`; `xrstors` cannot restore /// from an `xsave` area in which the extended region is in the standard form. /// State is restored based on bits `[62:0]` in `rs_mask`, `XCR0`, and /// `mem_addr.HEADER.XSTATE_BV`. `mem_addr` must be aligned on a 64-byte /// boundary. /// /// [Intel's documentation](https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_xrstors64) #[inline] #[target_feature(enable = "xsave,xsaves")] #[cfg_attr(test, assert_instr(xrstors64))] #[stable(feature = "simd_x86", since = "1.27.0")] pub unsafe fn _xrstors64(mem_addr: *const u8, rs_mask: u64) { xrstors64(mem_addr, (rs_mask >> 32) as u32, rs_mask as u32); } // FIXME: https://github.com/rust-lang/stdarch/issues/209 // All these tests fail with Intel SDE. /* #[cfg(test)] mod tests { use crate::core_arch::x86::x86_64::xsave; use stdarch_test::simd_test; use std::fmt; // FIXME: https://github.com/rust-lang/stdarch/issues/209 #[repr(align(64))] struct XsaveArea { // max size for 256-bit registers is 800 bytes: // see https://software.intel.com/en-us/node/682996 // max size for 512-bit registers is 2560 bytes: // FIXME: add source data: [u8; 2560], } impl XsaveArea { fn new() -> XsaveArea { XsaveArea { data: [0; 2560] } } fn ptr(&mut self) -> *mut u8 { &mut self.data[0] as *mut _ as *mut u8 } } impl PartialEq for XsaveArea { fn eq(&self, other: &XsaveArea) -> bool { for i in 0..self.data.len() { if self.data[i] != other.data[i] { return false; } } true } } impl fmt::Debug for XsaveArea { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[")?; for i in 0..self.data.len() { write!(f, "{}", self.data[i])?; if i != self.data.len() - 1 { write!(f, ", ")?; } } write!(f, "]") } } #[simd_test(enable = "xsave")] unsafe fn xsave64() { let m = 0xFFFFFFFFFFFFFFFF_u64; //< all registers let mut a = XsaveArea::new(); let mut b = XsaveArea::new(); xsave::_xsave64(a.ptr(), m); xsave::_xrstor64(a.ptr(), m); xsave::_xsave64(b.ptr(), m); assert_eq!(a, b); } #[simd_test(enable = "xsave,xsaveopt")] unsafe fn xsaveopt64() { let m = 0xFFFFFFFFFFFFFFFF_u64; //< all registers let mut a = XsaveArea::new(); let mut b = XsaveArea::new(); xsave::_xsaveopt64(a.ptr(), m); xsave::_xrstor64(a.ptr(), m); xsave::_xsaveopt64(b.ptr(), m); assert_eq!(a, b); } #[simd_test(enable = "xsave,xsavec")] unsafe fn xsavec64() { let m = 0xFFFFFFFFFFFFFFFF_u64; //< all registers let mut a = XsaveArea::new(); let mut b = XsaveArea::new(); xsave::_xsavec64(a.ptr(), m); xsave::_xrstor64(a.ptr(), m); xsave::_xsavec64(b.ptr(), m); assert_eq!(a, b); } #[simd_test(enable = "xsave,xsaves")] unsafe fn xsaves64() { let m = 0xFFFFFFFFFFFFFFFF_u64; //< all registers let mut a = XsaveArea::new(); let mut b = XsaveArea::new(); xsave::_xsaves64(a.ptr(), m); xsave::_xrstors64(a.ptr(), m); xsave::_xsaves64(b.ptr(), m); assert_eq!(a, b); } } */