use clean::AttributesExt; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_hir as hir; use rustc_hir::def::CtorKind; use rustc_hir::def_id::DefId; use rustc_middle::middle::stability; use rustc_middle::span_bug; use rustc_middle::ty::layout::LayoutError; use rustc_middle::ty::{Adt, TyCtxt}; use rustc_span::hygiene::MacroKind; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_target::abi::{Layout, Primitive, TagEncoding, Variants}; use std::cmp::Ordering; use std::fmt; use std::rc::Rc; use super::{ collect_paths_for_type, document, ensure_trailing_slash, get_filtered_impls_for_reference, item_ty_to_section, notable_traits_decl, render_all_impls, render_assoc_item, render_assoc_items, render_attributes_in_code, render_attributes_in_pre, render_impl, render_rightside, render_stability_since_raw, AssocItemLink, Context, ImplRenderingParameters, }; use crate::clean; use crate::config::ModuleSorting; use crate::formats::item_type::ItemType; use crate::formats::{AssocItemRender, Impl, RenderMode}; use crate::html::escape::Escape; use crate::html::format::{ join_with_double_colon, print_abi_with_space, print_constness_with_space, print_where_clause, Buffer, Ending, PrintWithSpace, }; use crate::html::highlight; use crate::html::layout::Page; use crate::html::markdown::{HeadingOffset, MarkdownSummaryLine}; use crate::html::url_parts_builder::UrlPartsBuilder; use askama::Template; use itertools::Itertools; const ITEM_TABLE_OPEN: &str = "
{}extern crate {} as {};",
myitem.visibility.print_with_space(myitem.item_id, cx),
anchor(myitem.item_id.expect_def_id(), src, cx),
myitem.name.unwrap(),
),
None => write!(
w,
"{}extern crate {};",
myitem.visibility.print_with_space(myitem.item_id, cx),
anchor(myitem.item_id.expect_def_id(), myitem.name.unwrap(), cx),
),
}
w.write_str("
");
w.write_str(ITEM_TABLE_ROW_CLOSE);
}
clean::ImportItem(ref import) => {
let (stab, stab_tags) = if let Some(import_def_id) = import.source.did {
let ast_attrs = cx.tcx().get_attrs_unchecked(import_def_id);
let import_attrs = Box::new(clean::Attributes::from_ast(ast_attrs));
// Just need an item with the correct def_id and attrs
let import_item = clean::Item {
item_id: import_def_id.into(),
attrs: import_attrs,
cfg: ast_attrs.cfg(cx.tcx(), &cx.cache().hidden_cfg),
..myitem.clone()
};
let stab = import_item.stability_class(cx.tcx());
let stab_tags = Some(extra_info_tags(&import_item, item, cx.tcx()));
(stab, stab_tags)
} else {
(None, None)
};
let add = if stab.is_some() { " " } else { "" };
w.write_str(ITEM_TABLE_ROW_OPEN);
let id = match import.kind {
clean::ImportKind::Simple(s) => {
format!(" id=\"{}\"", cx.derive_id(format!("reexport.{}", s)))
}
clean::ImportKind::Glob => String::new(),
};
let stab_tags = stab_tags.unwrap_or_default();
let (stab_tags_before, stab_tags_after) = if stab_tags.is_empty() {
("", "")
} else {
("", "")
};
write!(
w,
"\
{vis}{imp}
\
\
{stab_tags_before}{stab_tags}{stab_tags_after}",
stab = stab.unwrap_or_default(),
vis = myitem.visibility.print_with_space(myitem.item_id, cx),
imp = import.print(cx),
);
w.write_str(ITEM_TABLE_ROW_CLOSE);
}
_ => {
if myitem.name.is_none() {
continue;
}
let unsafety_flag = match *myitem.kind {
clean::FunctionItem(_) | clean::ForeignFunctionItem(_)
if myitem.fn_header(cx.tcx()).unwrap().unsafety
== hir::Unsafety::Unsafe =>
{
"⚠"
}
_ => "",
};
let stab = myitem.stability_class(cx.tcx());
let add = if stab.is_some() { " " } else { "" };
let visibility_emoji = match myitem.visibility {
clean::Visibility::Restricted(_) => {
" 🔒 "
}
_ => "",
};
let doc_value = myitem.doc_value().unwrap_or_default();
w.write_str(ITEM_TABLE_ROW_OPEN);
let docs = MarkdownSummaryLine(&doc_value, &myitem.links(cx)).into_string();
let (docs_before, docs_after) = if docs.is_empty() {
("", "")
} else {
("", "")
};
write!(
w,
"\
{name}\
{visibility_emoji}\
{unsafety_flag}\
{stab_tags}\
\
{docs_before}{docs}{docs_after}",
name = myitem.name.unwrap(),
visibility_emoji = visibility_emoji,
stab_tags = extra_info_tags(myitem, item, cx.tcx()),
class = myitem.type_(),
add = add,
stab = stab.unwrap_or_default(),
unsafety_flag = unsafety_flag,
href = item_path(myitem.type_(), myitem.name.unwrap().as_str()),
title = [full_path(cx, myitem), myitem.type_().to_string()]
.iter()
.filter_map(|s| if !s.is_empty() { Some(s.as_str()) } else { None })
.collect::>()
.join(" "),
);
w.write_str(ITEM_TABLE_ROW_CLOSE);
}
}
}
if last_section.is_some() {
w.write_str(ITEM_TABLE_CLOSE);
}
}
/// Render the stability, deprecation and portability tags that are displayed in the item's summary
/// at the module level.
fn extra_info_tags(item: &clean::Item, parent: &clean::Item, tcx: TyCtxt<'_>) -> String {
let mut tags = String::new();
fn tag_html(class: &str, title: &str, contents: &str) -> String {
format!(r#"{}"#, class, Escape(title), contents)
}
// The trailing space after each tag is to space it properly against the rest of the docs.
if let Some(depr) = &item.deprecation(tcx) {
let mut message = "Deprecated";
if !stability::deprecation_in_effect(depr) {
message = "Deprecation planned";
}
tags += &tag_html("deprecated", "", message);
}
// The "rustc_private" crates are permanently unstable so it makes no sense
// to render "unstable" everywhere.
if item.stability(tcx).as_ref().map(|s| s.is_unstable() && s.feature != sym::rustc_private)
== Some(true)
{
tags += &tag_html("unstable", "", "Experimental");
}
let cfg = match (&item.cfg, parent.cfg.as_ref()) {
(Some(cfg), Some(parent_cfg)) => cfg.simplify_with(parent_cfg),
(cfg, _) => cfg.as_deref().cloned(),
};
debug!("Portability name={:?} {:?} - {:?} = {:?}", item.name, item.cfg, parent.cfg, cfg);
if let Some(ref cfg) = cfg {
tags += &tag_html("portability", &cfg.render_long_plain(), &cfg.render_short_html());
}
tags
}
fn item_function(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, f: &clean::Function) {
let header = it.fn_header(cx.tcx()).expect("printing a function which isn't a function");
let constness = print_constness_with_space(&header.constness, it.const_stability(cx.tcx()));
let unsafety = header.unsafety.print_with_space();
let abi = print_abi_with_space(header.abi).to_string();
let asyncness = header.asyncness.print_with_space();
let visibility = it.visibility.print_with_space(it.item_id, cx).to_string();
let name = it.name.unwrap();
let generics_len = format!("{:#}", f.generics.print(cx)).len();
let header_len = "fn ".len()
+ visibility.len()
+ constness.len()
+ asyncness.len()
+ unsafety.len()
+ abi.len()
+ name.as_str().len()
+ generics_len;
wrap_into_item_decl(w, |w| {
wrap_item(w, "fn", |w| {
render_attributes_in_pre(w, it, "");
w.reserve(header_len);
write!(
w,
"{vis}{constness}{asyncness}{unsafety}{abi}fn \
{name}{generics}{decl}{notable_traits}{where_clause}",
vis = visibility,
constness = constness,
asyncness = asyncness,
unsafety = unsafety,
abi = abi,
name = name,
generics = f.generics.print(cx),
where_clause = print_where_clause(&f.generics, cx, 0, Ending::Newline),
decl = f.decl.full_print(header_len, 0, cx),
notable_traits = notable_traits_decl(&f.decl, cx),
);
});
});
document(w, cx, it, None, HeadingOffset::H2)
}
fn item_trait(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, t: &clean::Trait) {
let bounds = bounds(&t.bounds, false, cx);
let required_types = t.items.iter().filter(|m| m.is_ty_associated_type()).collect::>();
let provided_types = t.items.iter().filter(|m| m.is_associated_type()).collect::>();
let required_consts = t.items.iter().filter(|m| m.is_ty_associated_const()).collect::>();
let provided_consts = t.items.iter().filter(|m| m.is_associated_const()).collect::>();
let required_methods = t.items.iter().filter(|m| m.is_ty_method()).collect::>();
let provided_methods = t.items.iter().filter(|m| m.is_method()).collect::>();
let count_types = required_types.len() + provided_types.len();
let count_consts = required_consts.len() + provided_consts.len();
let count_methods = required_methods.len() + provided_methods.len();
let must_implement_one_of_functions =
cx.tcx().trait_def(t.def_id).must_implement_one_of.clone();
// Output the trait definition
wrap_into_item_decl(w, |w| {
wrap_item(w, "trait", |w| {
render_attributes_in_pre(w, it, "");
write!(
w,
"{}{}{}trait {}{}{}",
it.visibility.print_with_space(it.item_id, cx),
t.unsafety(cx.tcx()).print_with_space(),
if t.is_auto(cx.tcx()) { "auto " } else { "" },
it.name.unwrap(),
t.generics.print(cx),
bounds
);
if !t.generics.where_predicates.is_empty() {
write!(w, "{}", print_where_clause(&t.generics, cx, 0, Ending::Newline));
} else {
w.write_str(" ");
}
if t.items.is_empty() {
w.write_str("{ }");
} else {
// FIXME: we should be using a derived_id for the Anchors here
w.write_str("{\n");
let mut toggle = false;
// If there are too many associated types, hide _everything_
if should_hide_fields(count_types) {
toggle = true;
toggle_open(
w,
format_args!(
"{} associated items",
count_types + count_consts + count_methods
),
);
}
for types in [&required_types, &provided_types] {
for t in types {
render_assoc_item(
w,
t,
AssocItemLink::Anchor(None),
ItemType::Trait,
cx,
RenderMode::Normal,
);
w.write_str(";\n");
}
}
// If there are too many associated constants, hide everything after them
// We also do this if the types + consts is large because otherwise we could
// render a bunch of types and _then_ a bunch of consts just because both were
// _just_ under the limit
if !toggle && should_hide_fields(count_types + count_consts) {
toggle = true;
toggle_open(
w,
format_args!(
"{} associated constant{} and {} method{}",
count_consts,
pluralize(count_consts),
count_methods,
pluralize(count_methods),
),
);
}
if count_types != 0 && (count_consts != 0 || count_methods != 0) {
w.write_str("\n");
}
for consts in [&required_consts, &provided_consts] {
for c in consts {
render_assoc_item(
w,
c,
AssocItemLink::Anchor(None),
ItemType::Trait,
cx,
RenderMode::Normal,
);
w.write_str(";\n");
}
}
if !toggle && should_hide_fields(count_methods) {
toggle = true;
toggle_open(w, format_args!("{} methods", count_methods));
}
if count_consts != 0 && count_methods != 0 {
w.write_str("\n");
}
for (pos, m) in required_methods.iter().enumerate() {
render_assoc_item(
w,
m,
AssocItemLink::Anchor(None),
ItemType::Trait,
cx,
RenderMode::Normal,
);
w.write_str(";\n");
if pos < required_methods.len() - 1 {
w.write_str("");
}
}
if !required_methods.is_empty() && !provided_methods.is_empty() {
w.write_str("\n");
}
for (pos, m) in provided_methods.iter().enumerate() {
render_assoc_item(
w,
m,
AssocItemLink::Anchor(None),
ItemType::Trait,
cx,
RenderMode::Normal,
);
match *m.kind {
clean::MethodItem(ref inner, _)
if !inner.generics.where_predicates.is_empty() =>
{
w.write_str(",\n { ... }\n");
}
_ => {
w.write_str(" { ... }\n");
}
}
if pos < provided_methods.len() - 1 {
w.write_str("");
}
}
if toggle {
toggle_close(w);
}
w.write_str("}");
}
});
});
// Trait documentation
document(w, cx, it, None, HeadingOffset::H2);
fn write_small_section_header(w: &mut Buffer, id: &str, title: &str, extra_content: &str) {
write!(
w,
"\
{1}\
{2}",
id, title, extra_content
)
}
fn trait_item(w: &mut Buffer, cx: &mut Context<'_>, m: &clean::Item, t: &clean::Item) {
let name = m.name.unwrap();
info!("Documenting {} on {:?}", name, t.name);
let item_type = m.type_();
let id = cx.derive_id(format!("{}.{}", item_type, name));
let mut content = Buffer::empty_from(w);
document(&mut content, cx, m, Some(t), HeadingOffset::H5);
let toggled = !content.is_empty();
if toggled {
write!(w, "");
}
write!(w, "", id);
render_rightside(w, cx, m, t, RenderMode::Normal);
write!(w, "");
render_assoc_item(
w,
m,
AssocItemLink::Anchor(Some(&id)),
ItemType::Impl,
cx,
RenderMode::Normal,
);
w.write_str("
");
w.write_str(" ");
if toggled {
write!(w, "
");
w.push_buffer(content);
write!(w, "");
}
}
if !required_types.is_empty() {
write_small_section_header(
w,
"required-associated-types",
"Required Associated Types",
"",
);
for t in required_types {
trait_item(w, cx, t, it);
}
w.write_str("");
}
if !provided_types.is_empty() {
write_small_section_header(
w,
"provided-associated-types",
"Provided Associated Types",
"",
);
for t in provided_types {
trait_item(w, cx, t, it);
}
w.write_str("");
}
if !required_consts.is_empty() {
write_small_section_header(
w,
"required-associated-consts",
"Required Associated Constants",
"",
);
for t in required_consts {
trait_item(w, cx, t, it);
}
w.write_str("");
}
if !provided_consts.is_empty() {
write_small_section_header(
w,
"provided-associated-consts",
"Provided Associated Constants",
"",
);
for t in provided_consts {
trait_item(w, cx, t, it);
}
w.write_str("");
}
// Output the documentation for each function individually
if !required_methods.is_empty() || must_implement_one_of_functions.is_some() {
write_small_section_header(
w,
"required-methods",
"Required Methods",
"",
);
if let Some(list) = must_implement_one_of_functions.as_deref() {
write!(
w,
"At least one of the `{}` methods is required.",
list.iter().join("`, `")
);
}
for m in required_methods {
trait_item(w, cx, m, it);
}
w.write_str("");
}
if !provided_methods.is_empty() {
write_small_section_header(
w,
"provided-methods",
"Provided Methods",
"",
);
for m in provided_methods {
trait_item(w, cx, m, it);
}
w.write_str("");
}
// If there are methods directly on this trait object, render them here.
render_assoc_items(w, cx, it, it.item_id.expect_def_id(), AssocItemRender::All);
let cloned_shared = Rc::clone(&cx.shared);
let cache = &cloned_shared.cache;
let mut extern_crates = FxHashSet::default();
if let Some(implementors) = cache.implementors.get(&it.item_id.expect_def_id()) {
// The DefId is for the first Type found with that name. The bool is
// if any Types with the same name but different DefId have been found.
let mut implementor_dups: FxHashMap = FxHashMap::default();
for implementor in implementors {
if let Some(did) = implementor.inner_impl().for_.without_borrowed_ref().def_id(cache) &&
!did.is_local() {
extern_crates.insert(did.krate);
}
match implementor.inner_impl().for_.without_borrowed_ref() {
clean::Type::Path { ref path } if !path.is_assoc_ty() => {
let did = path.def_id();
let &mut (prev_did, ref mut has_duplicates) =
implementor_dups.entry(path.last()).or_insert((did, false));
if prev_did != did {
*has_duplicates = true;
}
}
_ => {}
}
}
let (local, foreign) =
implementors.iter().partition::, _>(|i| i.is_on_local_type(cx));
let (mut synthetic, mut concrete): (Vec<&&Impl>, Vec<&&Impl>) =
local.iter().partition(|i| i.inner_impl().kind.is_auto());
synthetic.sort_by(|a, b| compare_impl(a, b, cx));
concrete.sort_by(|a, b| compare_impl(a, b, cx));
if !foreign.is_empty() {
write_small_section_header(w, "foreign-impls", "Implementations on Foreign Types", "");
for implementor in foreign {
let provided_methods = implementor.inner_impl().provided_trait_methods(cx.tcx());
let assoc_link =
AssocItemLink::GotoSource(implementor.impl_item.item_id, &provided_methods);
render_impl(
w,
cx,
implementor,
it,
assoc_link,
RenderMode::Normal,
None,
&[],
ImplRenderingParameters {
show_def_docs: false,
show_default_items: false,
show_non_assoc_items: true,
toggle_open_by_default: false,
},
);
}
}
write_small_section_header(
w,
"implementors",
"Implementors",
"",
);
for implementor in concrete {
render_implementor(cx, implementor, it, w, &implementor_dups, &[]);
}
w.write_str("");
if t.is_auto(cx.tcx()) {
write_small_section_header(
w,
"synthetic-implementors",
"Auto implementors",
"",
);
for implementor in synthetic {
render_implementor(
cx,
implementor,
it,
w,
&implementor_dups,
&collect_paths_for_type(implementor.inner_impl().for_.clone(), cache),
);
}
w.write_str("");
}
} else {
// even without any implementations to write in, we still want the heading and list, so the
// implementors javascript file pulled in below has somewhere to write the impls into
write_small_section_header(
w,
"implementors",
"Implementors",
"",
);
if t.is_auto(cx.tcx()) {
write_small_section_header(
w,
"synthetic-implementors",
"Auto implementors",
"",
);
}
}
// Include implementors in crates that depend on the current crate.
//
// This is complicated by the way rustdoc is invoked, which is basically
// the same way rustc is invoked: it gets called, one at a time, for each
// crate. When building the rustdocs for the current crate, rustdoc can
// see crate metadata for its dependencies, but cannot see metadata for its
// dependents.
//
// To make this work, we generate a "hook" at this stage, and our
// dependents can "plug in" to it when they build. For simplicity's sake,
// it's [JSONP]: a JavaScript file with the data we need (and can parse),
// surrounded by a tiny wrapper that the Rust side ignores, but allows the
// JavaScript side to include without having to worry about Same Origin
// Policy. The code for *that* is in `write_shared.rs`.
//
// This is further complicated by `#[doc(inline)]`. We want all copies
// of an inlined trait to reference the same JS file, to address complex
// dependency graphs like this one (lower crates depend on higher crates):
//
// ```text
// --------------------------------------------
// | crate A: trait Foo |
// --------------------------------------------
// | |
// -------------------------------- |
// | crate B: impl A::Foo for Bar | |
// -------------------------------- |
// | |
// ---------------------------------------------
// | crate C: #[doc(inline)] use A::Foo as Baz |
// | impl Baz for Quux |
// ---------------------------------------------
// ```
//
// Basically, we want `C::Baz` and `A::Foo` to show the same set of
// impls, which is easier if they both treat `/implementors/A/trait.Foo.js`
// as the Single Source of Truth.
//
// We also want the `impl Baz for Quux` to be written to
// `trait.Foo.js`. However, when we generate plain HTML for `C::Baz`,
// we're going to want to generate plain HTML for `impl Baz for Quux` too,
// because that'll load faster, and it's better for SEO. And we don't want
// the same impl to show up twice on the same page.
//
// To make this work, the implementors JS file has a structure kinda
// like this:
//
// ```js
// JSONP({
// "B": {"impl A::Foo for Bar"},
// "C": {"impl Baz for Quux"},
// });
// ```
//
// First of all, this means we can rebuild a crate, and it'll replace its own
// data if something changes. That is, `rustdoc` is idempotent. The other
// advantage is that we can list the crates that get included in the HTML,
// and ignore them when doing the JavaScript-based part of rendering.
// So C's HTML will have something like this:
//
// ```html
//
// ```
//
// And, when the JS runs, anything in data-ignore-extern-crates is known
// to already be in the HTML, and will be ignored.
//
// [JSONP]: https://en.wikipedia.org/wiki/JSONP
let mut js_src_path: UrlPartsBuilder = std::iter::repeat("..")
.take(cx.current.len())
.chain(std::iter::once("implementors"))
.collect();
if let Some(did) = it.item_id.as_def_id() &&
let get_extern = { || cache.external_paths.get(&did).map(|s| s.0.clone()) } &&
let Some(fqp) = cache.exact_paths.get(&did).cloned().or_else(get_extern) {
js_src_path.extend(fqp[..fqp.len() - 1].iter().copied());
js_src_path.push_fmt(format_args!("{}.{}.js", it.type_(), fqp.last().unwrap()));
} else {
js_src_path.extend(cx.current.iter().copied());
js_src_path.push_fmt(format_args!("{}.{}.js", it.type_(), it.name.unwrap()));
}
let extern_crates = extern_crates
.into_iter()
.map(|cnum| cx.shared.tcx.crate_name(cnum).to_string())
.collect::>()
.join(",");
let (extern_before, extern_after) =
if extern_crates.is_empty() { ("", "") } else { (" data-ignore-extern-crates=\"", "\"") };
write!(
w,
"",
src = js_src_path.finish(),
);
}
fn item_trait_alias(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, t: &clean::TraitAlias) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "trait-alias", |w| {
render_attributes_in_pre(w, it, "");
write!(
w,
"trait {}{}{} = {};",
it.name.unwrap(),
t.generics.print(cx),
print_where_clause(&t.generics, cx, 0, Ending::Newline),
bounds(&t.bounds, true, cx)
);
});
});
document(w, cx, it, None, HeadingOffset::H2);
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
render_assoc_items(w, cx, it, it.item_id.expect_def_id(), AssocItemRender::All)
}
fn item_opaque_ty(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, t: &clean::OpaqueTy) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "opaque", |w| {
render_attributes_in_pre(w, it, "");
write!(
w,
"type {}{}{where_clause} = impl {bounds};",
it.name.unwrap(),
t.generics.print(cx),
where_clause = print_where_clause(&t.generics, cx, 0, Ending::Newline),
bounds = bounds(&t.bounds, false, cx),
);
});
});
document(w, cx, it, None, HeadingOffset::H2);
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
render_assoc_items(w, cx, it, it.item_id.expect_def_id(), AssocItemRender::All)
}
fn item_typedef(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, t: &clean::Typedef) {
fn write_content(w: &mut Buffer, cx: &Context<'_>, it: &clean::Item, t: &clean::Typedef) {
wrap_item(w, "typedef", |w| {
render_attributes_in_pre(w, it, "");
write!(w, "{}", it.visibility.print_with_space(it.item_id, cx));
write!(
w,
"type {}{}{where_clause} = {type_};",
it.name.unwrap(),
t.generics.print(cx),
where_clause = print_where_clause(&t.generics, cx, 0, Ending::Newline),
type_ = t.type_.print(cx),
);
});
}
wrap_into_item_decl(w, |w| write_content(w, cx, it, t));
document(w, cx, it, None, HeadingOffset::H2);
let def_id = it.item_id.expect_def_id();
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
render_assoc_items(w, cx, it, def_id, AssocItemRender::All);
document_type_layout(w, cx, def_id);
}
fn item_union(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, s: &clean::Union) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "union", |w| {
render_attributes_in_pre(w, it, "");
render_union(w, it, Some(&s.generics), &s.fields, "", cx);
});
});
document(w, cx, it, None, HeadingOffset::H2);
let mut fields = s
.fields
.iter()
.filter_map(|f| match *f.kind {
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
})
.peekable();
if fields.peek().is_some() {
write!(
w,
"\
Fields\
"
);
for (field, ty) in fields {
let name = field.name.expect("union field name");
let id = format!("{}.{}", ItemType::StructField, name);
write!(
w,
"\
\
{name}: {ty}
\
",
id = id,
name = name,
shortty = ItemType::StructField,
ty = ty.print(cx),
);
if let Some(stability_class) = field.stability_class(cx.tcx()) {
write!(w, "", stab = stability_class);
}
document(w, cx, field, Some(it), HeadingOffset::H3);
}
}
let def_id = it.item_id.expect_def_id();
render_assoc_items(w, cx, it, def_id, AssocItemRender::All);
document_type_layout(w, cx, def_id);
}
fn print_tuple_struct_fields(w: &mut Buffer, cx: &Context<'_>, s: &[clean::Item]) {
for (i, ty) in s.iter().enumerate() {
if i > 0 {
w.write_str(", ");
}
match *ty.kind {
clean::StrippedItem(box clean::StructFieldItem(_)) => w.write_str("_"),
clean::StructFieldItem(ref ty) => write!(w, "{}", ty.print(cx)),
_ => unreachable!(),
}
}
}
fn item_enum(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, e: &clean::Enum) {
let count_variants = e.variants().count();
wrap_into_item_decl(w, |w| {
wrap_item(w, "enum", |w| {
render_attributes_in_pre(w, it, "");
write!(
w,
"{}enum {}{}",
it.visibility.print_with_space(it.item_id, cx),
it.name.unwrap(),
e.generics.print(cx),
);
if !print_where_clause_and_check(w, &e.generics, cx) {
// If there wasn't a `where` clause, we add a whitespace.
w.write_str(" ");
}
let variants_stripped = e.has_stripped_entries();
if count_variants == 0 && !variants_stripped {
w.write_str("{}");
} else {
w.write_str("{\n");
let toggle = should_hide_fields(count_variants);
if toggle {
toggle_open(w, format_args!("{} variants", count_variants));
}
for v in e.variants() {
w.write_str(" ");
let name = v.name.unwrap();
match *v.kind {
clean::VariantItem(ref var) => match var {
// FIXME(#101337): Show discriminant
clean::Variant::CLike(..) => write!(w, "{}", name),
clean::Variant::Tuple(ref s) => {
write!(w, "{}(", name);
print_tuple_struct_fields(w, cx, s);
w.write_str(")");
}
clean::Variant::Struct(ref s) => {
render_struct(
w,
v,
None,
s.struct_type,
&s.fields,
" ",
false,
cx,
);
}
},
_ => unreachable!(),
}
w.write_str(",\n");
}
if variants_stripped {
w.write_str(" // some variants omitted\n");
}
if toggle {
toggle_close(w);
}
w.write_str("}");
}
});
});
document(w, cx, it, None, HeadingOffset::H2);
if count_variants != 0 {
write!(
w,
"\
Variants{}\
",
document_non_exhaustive_header(it)
);
document_non_exhaustive(w, it);
for variant in e.variants() {
let id = cx.derive_id(format!("{}.{}", ItemType::Variant, variant.name.unwrap()));
write!(
w,
"\
\
{name}",
id = id,
name = variant.name.unwrap()
);
if let clean::VariantItem(clean::Variant::Tuple(ref s)) = *variant.kind {
w.write_str("(");
print_tuple_struct_fields(w, cx, s);
w.write_str(")");
}
w.write_str("
");
render_stability_since_raw(
w,
variant.stable_since(cx.tcx()),
variant.const_stability(cx.tcx()),
it.stable_since(cx.tcx()),
it.const_stable_since(cx.tcx()),
);
w.write_str("
");
use crate::clean::Variant;
let heading_and_fields = match &*variant.kind {
clean::VariantItem(Variant::Struct(s)) => Some(("Fields", &s.fields)),
// Documentation on tuple variant fields is rare, so to reduce noise we only emit
// the section if at least one field is documented.
clean::VariantItem(Variant::Tuple(fields))
if fields.iter().any(|f| f.doc_value().is_some()) =>
{
Some(("Tuple Fields", fields))
}
_ => None,
};
if let Some((heading, fields)) = heading_and_fields {
let variant_id =
cx.derive_id(format!("{}.{}.fields", ItemType::Variant, variant.name.unwrap()));
write!(w, "", id = variant_id);
write!(w, "{heading}
", heading = heading);
document_non_exhaustive(w, variant);
for field in fields {
match *field.kind {
clean::StrippedItem(box clean::StructFieldItem(_)) => {}
clean::StructFieldItem(ref ty) => {
let id = cx.derive_id(format!(
"variant.{}.field.{}",
variant.name.unwrap(),
field.name.unwrap()
));
write!(
w,
"");
}
_ => unreachable!(),
}
}
w.write_str("");
}
document(w, cx, variant, Some(it), HeadingOffset::H4);
}
}
let def_id = it.item_id.expect_def_id();
render_assoc_items(w, cx, it, def_id, AssocItemRender::All);
document_type_layout(w, cx, def_id);
}
fn item_macro(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, t: &clean::Macro) {
wrap_into_item_decl(w, |w| {
highlight::render_macro_with_highlighting(&t.source, w);
});
document(w, cx, it, None, HeadingOffset::H2)
}
fn item_proc_macro(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, m: &clean::ProcMacro) {
wrap_into_item_decl(w, |w| {
let name = it.name.expect("proc-macros always have names");
match m.kind {
MacroKind::Bang => {
wrap_item(w, "macro", |w| {
write!(w, "{}!() {{ /* proc-macro */ }}", name);
});
}
MacroKind::Attr => {
wrap_item(w, "attr", |w| {
write!(w, "#[{}]", name);
});
}
MacroKind::Derive => {
wrap_item(w, "derive", |w| {
write!(w, "#[derive({})]", name);
if !m.helpers.is_empty() {
w.push_str("\n{\n");
w.push_str(" // Attributes available to this derive:\n");
for attr in &m.helpers {
writeln!(w, " #[{}]", attr);
}
w.push_str("}\n");
}
});
}
}
});
document(w, cx, it, None, HeadingOffset::H2)
}
fn item_primitive(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item) {
let def_id = it.item_id.expect_def_id();
document(w, cx, it, None, HeadingOffset::H2);
if it.name.map(|n| n.as_str() != "reference").unwrap_or(false) {
render_assoc_items(w, cx, it, def_id, AssocItemRender::All);
} else {
// We handle the "reference" primitive type on its own because we only want to list
// implementations on generic types.
let shared = Rc::clone(&cx.shared);
let (concrete, synthetic, blanket_impl) = get_filtered_impls_for_reference(&shared, it);
render_all_impls(w, cx, it, &concrete, &synthetic, &blanket_impl);
}
}
fn item_constant(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, c: &clean::Constant) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "const", |w| {
render_attributes_in_code(w, it);
write!(
w,
"{vis}const {name}: {typ}",
vis = it.visibility.print_with_space(it.item_id, cx),
name = it.name.unwrap(),
typ = c.type_.print(cx),
);
// FIXME: The code below now prints
// ` = _; // 100i32`
// if the expression is
// `50 + 50`
// which looks just wrong.
// Should we print
// ` = 100i32;`
// instead?
let value = c.value(cx.tcx());
let is_literal = c.is_literal(cx.tcx());
let expr = c.expr(cx.tcx());
if value.is_some() || is_literal {
write!(w, " = {expr};", expr = Escape(&expr));
} else {
w.write_str(";");
}
if !is_literal {
if let Some(value) = &value {
let value_lowercase = value.to_lowercase();
let expr_lowercase = expr.to_lowercase();
if value_lowercase != expr_lowercase
&& value_lowercase.trim_end_matches("i32") != expr_lowercase
{
write!(w, " // {value}", value = Escape(value));
}
}
}
});
});
document(w, cx, it, None, HeadingOffset::H2)
}
fn item_struct(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, s: &clean::Struct) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "struct", |w| {
render_attributes_in_code(w, it);
render_struct(w, it, Some(&s.generics), s.struct_type, &s.fields, "", true, cx);
});
});
document(w, cx, it, None, HeadingOffset::H2);
let mut fields = s
.fields
.iter()
.filter_map(|f| match *f.kind {
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
})
.peekable();
if let CtorKind::Fictive | CtorKind::Fn = s.struct_type {
if fields.peek().is_some() {
write!(
w,
"\
{}{}\
",
if let CtorKind::Fictive = s.struct_type { "Fields" } else { "Tuple Fields" },
document_non_exhaustive_header(it)
);
document_non_exhaustive(w, it);
for (index, (field, ty)) in fields.enumerate() {
let field_name =
field.name.map_or_else(|| index.to_string(), |sym| sym.as_str().to_string());
let id = cx.derive_id(format!("{}.{}", ItemType::StructField, field_name));
write!(
w,
"\
\
{name}: {ty}
\
",
item_type = ItemType::StructField,
id = id,
name = field_name,
ty = ty.print(cx)
);
document(w, cx, field, Some(it), HeadingOffset::H3);
}
}
}
let def_id = it.item_id.expect_def_id();
render_assoc_items(w, cx, it, def_id, AssocItemRender::All);
document_type_layout(w, cx, def_id);
}
fn item_static(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item, s: &clean::Static) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "static", |w| {
render_attributes_in_code(w, it);
write!(
w,
"{vis}static {mutability}{name}: {typ}",
vis = it.visibility.print_with_space(it.item_id, cx),
mutability = s.mutability.print_with_space(),
name = it.name.unwrap(),
typ = s.type_.print(cx)
);
});
});
document(w, cx, it, None, HeadingOffset::H2)
}
fn item_foreign_type(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item) {
wrap_into_item_decl(w, |w| {
wrap_item(w, "foreigntype", |w| {
w.write_str("extern {\n");
render_attributes_in_code(w, it);
write!(
w,
" {}type {};\n}}",
it.visibility.print_with_space(it.item_id, cx),
it.name.unwrap(),
);
});
});
document(w, cx, it, None, HeadingOffset::H2);
render_assoc_items(w, cx, it, it.item_id.expect_def_id(), AssocItemRender::All)
}
fn item_keyword(w: &mut Buffer, cx: &mut Context<'_>, it: &clean::Item) {
document(w, cx, it, None, HeadingOffset::H2)
}
/// Compare two strings treating multi-digit numbers as single units (i.e. natural sort order).
pub(crate) fn compare_names(mut lhs: &str, mut rhs: &str) -> Ordering {
/// Takes a non-numeric and a numeric part from the given &str.
fn take_parts<'a>(s: &mut &'a str) -> (&'a str, &'a str) {
let i = s.find(|c: char| c.is_ascii_digit());
let (a, b) = s.split_at(i.unwrap_or(s.len()));
let i = b.find(|c: char| !c.is_ascii_digit());
let (b, c) = b.split_at(i.unwrap_or(b.len()));
*s = c;
(a, b)
}
while !lhs.is_empty() || !rhs.is_empty() {
let (la, lb) = take_parts(&mut lhs);
let (ra, rb) = take_parts(&mut rhs);
// First process the non-numeric part.
match la.cmp(ra) {
Ordering::Equal => (),
x => return x,
}
// Then process the numeric part, if both sides have one (and they fit in a u64).
if let (Ok(ln), Ok(rn)) = (lb.parse::(), rb.parse::()) {
match ln.cmp(&rn) {
Ordering::Equal => (),
x => return x,
}
}
// Then process the numeric part again, but this time as strings.
match lb.cmp(rb) {
Ordering::Equal => (),
x => return x,
}
}
Ordering::Equal
}
pub(super) fn full_path(cx: &Context<'_>, item: &clean::Item) -> String {
let mut s = join_with_double_colon(&cx.current);
s.push_str("::");
s.push_str(item.name.unwrap().as_str());
s
}
pub(super) fn item_path(ty: ItemType, name: &str) -> String {
match ty {
ItemType::Module => format!("{}index.html", ensure_trailing_slash(name)),
_ => format!("{}.{}.html", ty, name),
}
}
fn bounds(t_bounds: &[clean::GenericBound], trait_alias: bool, cx: &Context<'_>) -> String {
let mut bounds = String::new();
if !t_bounds.is_empty() {
if !trait_alias {
bounds.push_str(": ");
}
for (i, p) in t_bounds.iter().enumerate() {
if i > 0 {
bounds.push_str(" + ");
}
bounds.push_str(&p.print(cx).to_string());
}
}
bounds
}
fn wrap_into_item_decl(w: &mut Buffer, f: F)
where
F: FnOnce(&mut Buffer),
{
w.write_str("");
f(w);
w.write_str("")
}
fn wrap_item(w: &mut Buffer, item_name: &str, f: F)
where
F: FnOnce(&mut Buffer),
{
w.write_fmt(format_args!("", item_name));
f(w);
w.write_str("
");
}
fn compare_impl<'a, 'b>(lhs: &'a &&Impl, rhs: &'b &&Impl, cx: &Context<'_>) -> Ordering {
let lhss = format!("{}", lhs.inner_impl().print(false, cx));
let rhss = format!("{}", rhs.inner_impl().print(false, cx));
// lhs and rhs are formatted as HTML, which may be unnecessary
compare_names(&lhss, &rhss)
}
fn render_implementor(
cx: &mut Context<'_>,
implementor: &Impl,
trait_: &clean::Item,
w: &mut Buffer,
implementor_dups: &FxHashMap,
aliases: &[String],
) {
// If there's already another implementor that has the same abridged name, use the
// full path, for example in `std::iter::ExactSizeIterator`
let use_absolute = match implementor.inner_impl().for_ {
clean::Type::Path { ref path, .. }
| clean::BorrowedRef { type_: box clean::Type::Path { ref path, .. }, .. }
if !path.is_assoc_ty() =>
{
implementor_dups[&path.last()].1
}
_ => false,
};
render_impl(
w,
cx,
implementor,
trait_,
AssocItemLink::Anchor(None),
RenderMode::Normal,
Some(use_absolute),
aliases,
ImplRenderingParameters {
show_def_docs: false,
show_default_items: false,
show_non_assoc_items: false,
toggle_open_by_default: false,
},
);
}
fn render_union(
w: &mut Buffer,
it: &clean::Item,
g: Option<&clean::Generics>,
fields: &[clean::Item],
tab: &str,
cx: &Context<'_>,
) {
write!(w, "{}union {}", it.visibility.print_with_space(it.item_id, cx), it.name.unwrap(),);
let where_displayed = g
.map(|g| {
write!(w, "{}", g.print(cx));
print_where_clause_and_check(w, g, cx)
})
.unwrap_or(false);
// If there wasn't a `where` clause, we add a whitespace.
if !where_displayed {
w.write_str(" ");
}
write!(w, "{{\n{}", tab);
let count_fields =
fields.iter().filter(|f| matches!(*f.kind, clean::StructFieldItem(..))).count();
let toggle = should_hide_fields(count_fields);
if toggle {
toggle_open(w, format_args!("{} fields", count_fields));
}
for field in fields {
if let clean::StructFieldItem(ref ty) = *field.kind {
write!(
w,
" {}{}: {},\n{}",
field.visibility.print_with_space(field.item_id, cx),
field.name.unwrap(),
ty.print(cx),
tab
);
}
}
if it.has_stripped_entries().unwrap() {
write!(w, " /* private fields */\n{}", tab);
}
if toggle {
toggle_close(w);
}
w.write_str("}");
}
fn render_struct(
w: &mut Buffer,
it: &clean::Item,
g: Option<&clean::Generics>,
ty: CtorKind,
fields: &[clean::Item],
tab: &str,
structhead: bool,
cx: &Context<'_>,
) {
write!(
w,
"{}{}{}",
it.visibility.print_with_space(it.item_id, cx),
if structhead { "struct " } else { "" },
it.name.unwrap()
);
if let Some(g) = g {
write!(w, "{}", g.print(cx))
}
match ty {
CtorKind::Fictive => {
let where_diplayed = g.map(|g| print_where_clause_and_check(w, g, cx)).unwrap_or(false);
// If there wasn't a `where` clause, we add a whitespace.
if !where_diplayed {
w.write_str(" {");
} else {
w.write_str("{");
}
let count_fields =
fields.iter().filter(|f| matches!(*f.kind, clean::StructFieldItem(..))).count();
let has_visible_fields = count_fields > 0;
let toggle = should_hide_fields(count_fields);
if toggle {
toggle_open(w, format_args!("{} fields", count_fields));
}
for field in fields {
if let clean::StructFieldItem(ref ty) = *field.kind {
write!(
w,
"\n{} {}{}: {},",
tab,
field.visibility.print_with_space(field.item_id, cx),
field.name.unwrap(),
ty.print(cx),
);
}
}
if has_visible_fields {
if it.has_stripped_entries().unwrap() {
write!(w, "\n{} /* private fields */", tab);
}
write!(w, "\n{}", tab);
} else if it.has_stripped_entries().unwrap() {
write!(w, " /* private fields */ ");
}
if toggle {
toggle_close(w);
}
w.write_str("}");
}
CtorKind::Fn => {
w.write_str("(");
for (i, field) in fields.iter().enumerate() {
if i > 0 {
w.write_str(", ");
}
match *field.kind {
clean::StrippedItem(box clean::StructFieldItem(..)) => write!(w, "_"),
clean::StructFieldItem(ref ty) => {
write!(
w,
"{}{}",
field.visibility.print_with_space(field.item_id, cx),
ty.print(cx),
)
}
_ => unreachable!(),
}
}
w.write_str(")");
if let Some(g) = g {
write!(w, "{}", print_where_clause(g, cx, 0, Ending::NoNewline));
}
// We only want a ";" when we are displaying a tuple struct, not a variant tuple struct.
if structhead {
w.write_str(";");
}
}
CtorKind::Const => {
// Needed for PhantomData.
if let Some(g) = g {
write!(w, "{}", print_where_clause(g, cx, 0, Ending::NoNewline));
}
w.write_str(";");
}
}
}
fn document_non_exhaustive_header(item: &clean::Item) -> &str {
if item.is_non_exhaustive() { " (Non-exhaustive)" } else { "" }
}
fn document_non_exhaustive(w: &mut Buffer, item: &clean::Item) {
if item.is_non_exhaustive() {
write!(
w,
"\
{}
\
",
{
if item.is_struct() {
"This struct is marked as non-exhaustive"
} else if item.is_enum() {
"This enum is marked as non-exhaustive"
} else if item.is_variant() {
"This variant is marked as non-exhaustive"
} else {
"This type is marked as non-exhaustive"
}
}
);
if item.is_struct() {
w.write_str(
"Non-exhaustive structs could have additional fields added in future. \
Therefore, non-exhaustive structs cannot be constructed in external crates \
using the traditional Struct { .. }
syntax; cannot be \
matched against without a wildcard ..
; and \
struct update syntax will not work.",
);
} else if item.is_enum() {
w.write_str(
"Non-exhaustive enums could have additional variants added in future. \
Therefore, when matching against variants of non-exhaustive enums, an \
extra wildcard arm must be added to account for any future variants.",
);
} else if item.is_variant() {
w.write_str(
"Non-exhaustive enum variants could have additional fields added in future. \
Therefore, non-exhaustive enum variants cannot be constructed in external \
crates and cannot be matched against.",
);
} else {
w.write_str(
"This type will require a wildcard arm in any match statements or constructors.",
);
}
w.write_str("");
}
}
fn document_type_layout(w: &mut Buffer, cx: &Context<'_>, ty_def_id: DefId) {
fn write_size_of_layout(w: &mut Buffer, layout: Layout<'_>, tag_size: u64) {
if layout.abi().is_unsized() {
write!(w, "(unsized)");
} else {
let bytes = layout.size().bytes() - tag_size;
write!(w, "{size} byte{pl}", size = bytes, pl = if bytes == 1 { "" } else { "s" },);
}
}
if !cx.shared.show_type_layout {
return;
}
writeln!(
w,
" \
Layout
"
);
writeln!(w, "");
let tcx = cx.tcx();
let param_env = tcx.param_env(ty_def_id);
let ty = tcx.type_of(ty_def_id);
match tcx.layout_of(param_env.and(ty)) {
Ok(ty_layout) => {
writeln!(
w,
"Note: Most layout information is \
completely unstable and may even differ between compilations. \
The only exception is types with certain repr(...)
attributes. \
Please see the Rust Reference’s \
“Type Layout” \
chapter for details on type layout guarantees.
"
);
w.write_str("Size: ");
write_size_of_layout(w, ty_layout.layout, 0);
writeln!(w, "
");
if let Variants::Multiple { variants, tag, tag_encoding, .. } =
&ty_layout.layout.variants()
{
if !variants.is_empty() {
w.write_str(
"Size for each variant:
\
",
);
let Adt(adt, _) = ty_layout.ty.kind() else {
span_bug!(tcx.def_span(ty_def_id), "not an adt")
};
let tag_size = if let TagEncoding::Niche { .. } = tag_encoding {
0
} else if let Primitive::Int(i, _) = tag.primitive() {
i.size().bytes()
} else {
span_bug!(tcx.def_span(ty_def_id), "tag is neither niche nor int")
};
for (index, layout) in variants.iter_enumerated() {
let name = adt.variant(index).name;
write!(w, "{name}
: ", name = name);
write_size_of_layout(w, *layout, tag_size);
writeln!(w, " ");
}
w.write_str("
");
}
}
}
// This kind of layout error can occur with valid code, e.g. if you try to
// get the layout of a generic type such as `Vec`.
Err(LayoutError::Unknown(_)) => {
writeln!(
w,
"Note: Unable to compute type layout, \
possibly due to this type having generic parameters. \
Layout can only be computed for concrete, fully-instantiated types.
"
);
}
// This kind of error probably can't happen with valid code, but we don't
// want to panic and prevent the docs from building, so we just let the
// user know that we couldn't compute the layout.
Err(LayoutError::SizeOverflow(_)) => {
writeln!(
w,
"Note: Encountered an error during type layout; \
the type was too big.
"
);
}
Err(LayoutError::NormalizationFailure(_, _)) => {
writeln!(
w,
"Note: Encountered an error during type layout; \
the type failed to be normalized.
"
)
}
}
writeln!(w, " ");
}
fn pluralize(count: usize) -> &'static str {
if count > 1 { "s" } else { "" }
}