//! The Rust AST Visitor. Extracts useful information and massages it into a form //! usable for `clean`. use rustc_data_structures::fx::{FxHashSet, FxIndexMap}; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, LocalDefIdSet}; use rustc_hir::intravisit::{walk_body, walk_item, Visitor}; use rustc_hir::{Node, CRATE_HIR_ID}; use rustc_middle::hir::nested_filter; use rustc_middle::ty::TyCtxt; use rustc_span::def_id::{CRATE_DEF_ID, LOCAL_CRATE}; use rustc_span::hygiene::MacroKind; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::Span; use std::mem; use crate::clean::utils::{inherits_doc_hidden, should_ignore_res}; use crate::clean::{cfg::Cfg, reexport_chain, AttributesExt, NestedAttributesExt}; use crate::core; /// This module is used to store stuff from Rust's AST in a more convenient /// manner (and with prettier names) before cleaning. #[derive(Debug)] pub(crate) struct Module<'hir> { pub(crate) name: Symbol, pub(crate) where_inner: Span, pub(crate) mods: Vec>, pub(crate) def_id: LocalDefId, pub(crate) renamed: Option, pub(crate) import_id: Option, /// The key is the item `ItemId` and the value is: (item, renamed, import_id). /// We use `FxIndexMap` to keep the insert order. pub(crate) items: FxIndexMap< (LocalDefId, Option), (&'hir hir::Item<'hir>, Option, Option), >, /// Same as for `items`. pub(crate) inlined_foreigns: FxIndexMap<(DefId, Option), (Res, LocalDefId)>, pub(crate) foreigns: Vec<(&'hir hir::ForeignItem<'hir>, Option)>, } impl Module<'_> { pub(crate) fn new( name: Symbol, def_id: LocalDefId, where_inner: Span, renamed: Option, import_id: Option, ) -> Self { Module { name, def_id, where_inner, renamed, import_id, mods: Vec::new(), items: FxIndexMap::default(), inlined_foreigns: FxIndexMap::default(), foreigns: Vec::new(), } } pub(crate) fn where_outer(&self, tcx: TyCtxt<'_>) -> Span { tcx.def_span(self.def_id) } } // FIXME: Should this be replaced with tcx.def_path_str? fn def_id_to_path(tcx: TyCtxt<'_>, did: DefId) -> Vec { let crate_name = tcx.crate_name(did.krate); let relative = tcx.def_path(did).data.into_iter().filter_map(|elem| elem.data.get_opt_name()); std::iter::once(crate_name).chain(relative).collect() } pub(crate) struct RustdocVisitor<'a, 'tcx> { cx: &'a mut core::DocContext<'tcx>, view_item_stack: LocalDefIdSet, inlining: bool, /// Are the current module and all of its parents public? inside_public_path: bool, exact_paths: DefIdMap>, modules: Vec>, is_importable_from_parent: bool, inside_body: bool, } impl<'a, 'tcx> RustdocVisitor<'a, 'tcx> { pub(crate) fn new(cx: &'a mut core::DocContext<'tcx>) -> RustdocVisitor<'a, 'tcx> { // If the root is re-exported, terminate all recursion. let mut stack = LocalDefIdSet::default(); stack.insert(CRATE_DEF_ID); let om = Module::new( cx.tcx.crate_name(LOCAL_CRATE), CRATE_DEF_ID, cx.tcx.hir().root_module().spans.inner_span, None, None, ); RustdocVisitor { cx, view_item_stack: stack, inlining: false, inside_public_path: true, exact_paths: Default::default(), modules: vec![om], is_importable_from_parent: true, inside_body: false, } } fn store_path(&mut self, did: DefId) { let tcx = self.cx.tcx; self.exact_paths.entry(did).or_insert_with(|| def_id_to_path(tcx, did)); } pub(crate) fn visit(mut self) -> Module<'tcx> { let root_module = self.cx.tcx.hir().root_module(); self.visit_mod_contents(CRATE_DEF_ID, root_module); let mut top_level_module = self.modules.pop().unwrap(); // `#[macro_export] macro_rules!` items are reexported at the top level of the // crate, regardless of where they're defined. We want to document the // top level re-export of the macro, not its original definition, since // the re-export defines the path that a user will actually see. Accordingly, // we add the re-export as an item here, and then skip over the original // definition in `visit_item()` below. // // We also skip `#[macro_export] macro_rules!` that have already been inserted, // it can happen if within the same module a `#[macro_export] macro_rules!` // is declared but also a reexport of itself producing two exports of the same // macro in the same module. let mut inserted = FxHashSet::default(); for child in self.cx.tcx.module_children_local(CRATE_DEF_ID) { if !child.reexport_chain.is_empty() && let Res::Def(DefKind::Macro(_), def_id) = child.res && let Some(local_def_id) = def_id.as_local() && self.cx.tcx.has_attr(def_id, sym::macro_export) && inserted.insert(def_id) { let item = self.cx.tcx.hir().expect_item(local_def_id); top_level_module.items.insert((local_def_id, Some(item.ident.name)), (item, None, None)); } } self.cx.cache.hidden_cfg = self .cx .tcx .hir() .attrs(CRATE_HIR_ID) .iter() .filter(|attr| attr.has_name(sym::doc)) .flat_map(|attr| attr.meta_item_list().into_iter().flatten()) .filter(|attr| attr.has_name(sym::cfg_hide)) .flat_map(|attr| { attr.meta_item_list() .unwrap_or(&[]) .iter() .filter_map(|attr| { Cfg::parse(attr.meta_item()?) .map_err(|e| self.cx.sess().diagnostic().span_err(e.span, e.msg)) .ok() }) .collect::>() }) .chain( [Cfg::Cfg(sym::test, None), Cfg::Cfg(sym::doc, None), Cfg::Cfg(sym::doctest, None)] .into_iter(), ) .collect(); self.cx.cache.exact_paths = self.exact_paths; top_level_module } /// This method will go through the given module items in two passes: /// 1. The items which are not glob imports/reexports. /// 2. The glob imports/reexports. fn visit_mod_contents(&mut self, def_id: LocalDefId, m: &'tcx hir::Mod<'tcx>) { debug!("Going through module {m:?}"); // Keep track of if there were any private modules in the path. let orig_inside_public_path = self.inside_public_path; self.inside_public_path &= self.cx.tcx.local_visibility(def_id).is_public(); // Reimplementation of `walk_mod` because we need to do it in two passes (explanations in // the second loop): for &i in m.item_ids { let item = self.cx.tcx.hir().item(i); if !matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) { self.visit_item(item); } } for &i in m.item_ids { let item = self.cx.tcx.hir().item(i); // To match the way import precedence works, visit glob imports last. // Later passes in rustdoc will de-duplicate by name and kind, so if glob- // imported items appear last, then they'll be the ones that get discarded. if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) { self.visit_item(item); } } self.inside_public_path = orig_inside_public_path; debug!("Leaving module {m:?}"); } /// Tries to resolve the target of a `pub use` statement and inlines the /// target if it is defined locally and would not be documented otherwise, /// or when it is specifically requested with `please_inline`. /// (the latter is the case when the import is marked `doc(inline)`) /// /// Cross-crate inlining occurs later on during crate cleaning /// and follows different rules. /// /// Returns `true` if the target has been inlined. fn maybe_inline_local( &mut self, def_id: LocalDefId, res: Res, renamed: Option, glob: bool, please_inline: bool, ) -> bool { debug!("maybe_inline_local (renamed: {renamed:?}) res: {res:?}"); if renamed == Some(kw::Underscore) { // We never inline `_` reexports. return false; } if self.cx.output_format.is_json() { return false; } let tcx = self.cx.tcx; let Some(ori_res_did) = res.opt_def_id() else { return false; }; let document_hidden = self.cx.render_options.document_hidden; let use_attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(def_id)); // Don't inline `doc(hidden)` imports so they can be stripped at a later stage. let is_no_inline = use_attrs.lists(sym::doc).has_word(sym::no_inline) || (document_hidden && use_attrs.lists(sym::doc).has_word(sym::hidden)); if is_no_inline { return false; } let is_hidden = !document_hidden && tcx.is_doc_hidden(ori_res_did); let Some(res_did) = ori_res_did.as_local() else { // For cross-crate impl inlining we need to know whether items are // reachable in documentation -- a previously unreachable item can be // made reachable by cross-crate inlining which we're checking here. // (this is done here because we need to know this upfront). crate::visit_lib::lib_embargo_visit_item(self.cx, ori_res_did); if is_hidden || glob { return false; } // We store inlined foreign items otherwise, it'd mean that the `use` item would be kept // around. It's not a problem unless this `use` imports both a local AND a foreign item. // If a local item is inlined, its `use` is not supposed to still be around in `clean`, // which would make appear the `use` in the generated documentation like the local item // was not inlined even though it actually was. self.modules .last_mut() .unwrap() .inlined_foreigns .insert((ori_res_did, renamed), (res, def_id)); return true; }; let is_private = !self.cx.cache.effective_visibilities.is_directly_public(tcx, ori_res_did); let item = tcx.hir().get_by_def_id(res_did); if !please_inline { let inherits_hidden = !document_hidden && inherits_doc_hidden(tcx, res_did, None); // Only inline if requested or if the item would otherwise be stripped. if (!is_private && !inherits_hidden) || ( is_hidden && // If it's a doc hidden module, we need to keep it in case some of its inner items // are re-exported. !matches!(item, Node::Item(&hir::Item { kind: hir::ItemKind::Mod(_), .. })) ) || // The imported item is public and not `doc(hidden)` so no need to inline it. self.reexport_public_and_not_hidden(def_id, res_did) { return false; } } let is_bang_macro = matches!( item, Node::Item(&hir::Item { kind: hir::ItemKind::Macro(_, MacroKind::Bang), .. }) ); if !self.view_item_stack.insert(res_did) && !is_bang_macro { return false; } let inlined = match item { // Bang macros are handled a bit on their because of how they are handled by the // compiler. If they have `#[doc(hidden)]` and the re-export doesn't have // `#[doc(inline)]`, then we don't inline it. Node::Item(_) if is_bang_macro && !please_inline && renamed.is_some() && is_hidden => { return false; } Node::Item(&hir::Item { kind: hir::ItemKind::Mod(ref m), .. }) if glob => { let prev = mem::replace(&mut self.inlining, true); for &i in m.item_ids { let i = tcx.hir().item(i); self.visit_item_inner(i, None, Some(def_id)); } self.inlining = prev; true } Node::Item(it) if !glob => { let prev = mem::replace(&mut self.inlining, true); self.visit_item_inner(it, renamed, Some(def_id)); self.inlining = prev; true } Node::ForeignItem(it) if !glob => { let prev = mem::replace(&mut self.inlining, true); self.visit_foreign_item_inner(it, renamed); self.inlining = prev; true } _ => false, }; self.view_item_stack.remove(&res_did); if inlined { self.cx.cache.inlined_items.insert(ori_res_did); } inlined } /// Returns `true` if the item is visible, meaning it's not `#[doc(hidden)]` or private. /// /// This function takes into account the entire re-export `use` chain, so it needs the /// ID of the "leaf" `use` and the ID of the "root" item. fn reexport_public_and_not_hidden( &self, import_def_id: LocalDefId, target_def_id: LocalDefId, ) -> bool { if self.cx.render_options.document_hidden { return true; } let tcx = self.cx.tcx; let item_def_id = reexport_chain(tcx, import_def_id, target_def_id.to_def_id()) .iter() .flat_map(|reexport| reexport.id()) .map(|id| id.expect_local()) .nth(1) .unwrap_or(target_def_id); item_def_id != import_def_id && self.cx.cache.effective_visibilities.is_directly_public(tcx, item_def_id.to_def_id()) && !tcx.is_doc_hidden(item_def_id) && !inherits_doc_hidden(tcx, item_def_id, None) } #[inline] fn add_to_current_mod( &mut self, item: &'tcx hir::Item<'_>, renamed: Option, parent_id: Option, ) { if self.is_importable_from_parent // If we're inside an item, only impl blocks and `macro_rules!` with the `macro_export` // attribute can still be visible. || match item.kind { hir::ItemKind::Impl(..) => true, hir::ItemKind::Macro(_, MacroKind::Bang) => { self.cx.tcx.has_attr(item.owner_id.def_id, sym::macro_export) } _ => false, } { self.modules .last_mut() .unwrap() .items .insert((item.owner_id.def_id, renamed), (item, renamed, parent_id)); } } fn visit_item_inner( &mut self, item: &'tcx hir::Item<'_>, renamed: Option, import_id: Option, ) { debug!("visiting item {item:?}"); if self.inside_body { // Only impls can be "seen" outside a body. For example: // // ``` // struct Bar; // // fn foo() { // impl Bar { fn bar() {} } // } // Bar::bar(); // ``` if let hir::ItemKind::Impl(impl_) = item.kind && // Don't duplicate impls when inlining or if it's implementing a trait, we'll pick // them up regardless of where they're located. impl_.of_trait.is_none() { self.add_to_current_mod(item, None, None); } return; } let name = renamed.unwrap_or(item.ident.name); let tcx = self.cx.tcx; let def_id = item.owner_id.to_def_id(); let is_pub = tcx.visibility(def_id).is_public(); if is_pub { self.store_path(item.owner_id.to_def_id()); } match item.kind { hir::ItemKind::ForeignMod { items, .. } => { for item in items { let item = tcx.hir().foreign_item(item.id); self.visit_foreign_item_inner(item, None); } } // If we're inlining, skip private items. _ if self.inlining && !is_pub => {} hir::ItemKind::GlobalAsm(..) => {} hir::ItemKind::Use(_, hir::UseKind::ListStem) => {} hir::ItemKind::Use(path, kind) => { for &res in &path.res { // Struct and variant constructors and proc macro stubs always show up alongside // their definitions, we've already processed them so just discard these. if should_ignore_res(res) { continue; } let attrs = tcx.hir().attrs(tcx.hir().local_def_id_to_hir_id(item.owner_id.def_id)); // If there was a private module in the current path then don't bother inlining // anything as it will probably be stripped anyway. if is_pub && self.inside_public_path { let please_inline = attrs.iter().any(|item| match item.meta_item_list() { Some(ref list) if item.has_name(sym::doc) => { list.iter().any(|i| i.has_name(sym::inline)) } _ => false, }); let is_glob = kind == hir::UseKind::Glob; let ident = if is_glob { None } else { Some(name) }; if self.maybe_inline_local( item.owner_id.def_id, res, ident, is_glob, please_inline, ) { debug!("Inlining {:?}", item.owner_id.def_id); continue; } } self.add_to_current_mod(item, renamed, import_id); } } hir::ItemKind::Macro(ref macro_def, _) => { // `#[macro_export] macro_rules!` items are handled separately in `visit()`, // above, since they need to be documented at the module top level. Accordingly, // we only want to handle macros if one of three conditions holds: // // 1. This macro was defined by `macro`, and thus isn't covered by the case // above. // 2. This macro isn't marked with `#[macro_export]`, and thus isn't covered // by the case above. // 3. We're inlining, since a reexport where inlining has been requested // should be inlined even if it is also documented at the top level. let def_id = item.owner_id.to_def_id(); let is_macro_2_0 = !macro_def.macro_rules; let nonexported = !tcx.has_attr(def_id, sym::macro_export); if is_macro_2_0 || nonexported || self.inlining { self.add_to_current_mod(item, renamed, import_id); } } hir::ItemKind::Mod(ref m) => { self.enter_mod(item.owner_id.def_id, m, name, renamed, import_id); } hir::ItemKind::Fn(..) | hir::ItemKind::ExternCrate(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::TyAlias { .. }, .. }) | hir::ItemKind::Static(..) | hir::ItemKind::Trait(..) | hir::ItemKind::TraitAlias(..) => { self.add_to_current_mod(item, renamed, import_id); } hir::ItemKind::OpaqueTy(hir::OpaqueTy { origin: hir::OpaqueTyOrigin::AsyncFn(_) | hir::OpaqueTyOrigin::FnReturn(_), .. }) => { // return-position impl traits are never nameable, and should never be documented. } hir::ItemKind::Const(..) => { // Underscore constants do not correspond to a nameable item and // so are never useful in documentation. if name != kw::Underscore { self.add_to_current_mod(item, renamed, import_id); } } hir::ItemKind::Impl(impl_) => { // Don't duplicate impls when inlining or if it's implementing a trait, we'll pick // them up regardless of where they're located. if !self.inlining && impl_.of_trait.is_none() { self.add_to_current_mod(item, None, None); } } } } fn visit_foreign_item_inner( &mut self, item: &'tcx hir::ForeignItem<'_>, renamed: Option, ) { // If inlining we only want to include public functions. if !self.inlining || self.cx.tcx.visibility(item.owner_id).is_public() { self.modules.last_mut().unwrap().foreigns.push((item, renamed)); } } /// This method will create a new module and push it onto the "modules stack" then call /// `visit_mod_contents`. Once done, it'll remove it from the "modules stack" and instead /// add into the list of modules of the current module. fn enter_mod( &mut self, id: LocalDefId, m: &'tcx hir::Mod<'tcx>, name: Symbol, renamed: Option, import_id: Option, ) { self.modules.push(Module::new(name, id, m.spans.inner_span, renamed, import_id)); self.visit_mod_contents(id, m); let last = self.modules.pop().unwrap(); self.modules.last_mut().unwrap().mods.push(last); } } // We need to implement this visitor so it'll go everywhere and retrieve items we're interested in // such as impl blocks in const blocks. impl<'a, 'tcx> Visitor<'tcx> for RustdocVisitor<'a, 'tcx> { type NestedFilter = nested_filter::All; fn nested_visit_map(&mut self) -> Self::Map { self.cx.tcx.hir() } fn visit_item(&mut self, i: &'tcx hir::Item<'tcx>) { self.visit_item_inner(i, None, None); let new_value = self.is_importable_from_parent && matches!( i.kind, hir::ItemKind::Mod(..) | hir::ItemKind::ForeignMod { .. } | hir::ItemKind::Impl(..) | hir::ItemKind::Trait(..) ); let prev = mem::replace(&mut self.is_importable_from_parent, new_value); walk_item(self, i); self.is_importable_from_parent = prev; } fn visit_mod(&mut self, _: &hir::Mod<'tcx>, _: Span, _: hir::HirId) { // Handled in `visit_item_inner` } fn visit_use(&mut self, _: &hir::UsePath<'tcx>, _: hir::HirId) { // Handled in `visit_item_inner` } fn visit_path(&mut self, _: &hir::Path<'tcx>, _: hir::HirId) { // Handled in `visit_item_inner` } fn visit_label(&mut self, _: &rustc_ast::Label) { // Unneeded. } fn visit_infer(&mut self, _: &hir::InferArg) { // Unneeded. } fn visit_lifetime(&mut self, _: &hir::Lifetime) { // Unneeded. } fn visit_body(&mut self, b: &'tcx hir::Body<'tcx>) { let prev = mem::replace(&mut self.inside_body, true); walk_body(self, b); self.inside_body = prev; } }