// run-pass #![feature(fn_traits, unboxed_closures)] use std::marker::PhantomData; // Test that we are able to infer a suitable kind for a "recursive" // closure. As far as I can tell, coding up a recursive closure // requires the good ol' [Y Combinator]. // // [Y Combinator]: https://en.wikipedia.org/wiki/Fixed-point_combinator#Y_combinator struct YCombinator { func: F, marker: PhantomData<(A,R)>, } impl YCombinator { fn new(f: F) -> YCombinator { YCombinator { func: f, marker: PhantomData } } } impl R, A) -> R> Fn<(A,)> for YCombinator { extern "rust-call" fn call(&self, (arg,): (A,)) -> R { (self.func)(self, arg) } } impl R, A) -> R> FnMut<(A,)> for YCombinator { extern "rust-call" fn call_mut(&mut self, args: (A,)) -> R { self.call(args) } } impl R, A) -> R> FnOnce<(A,)> for YCombinator { type Output = R; extern "rust-call" fn call_once(self, args: (A,)) -> R { self.call(args) } } fn main() { let factorial = |recur: &dyn Fn(u32) -> u32, arg: u32| -> u32 { if arg == 0 {1} else {arg * recur(arg-1)} }; let factorial: YCombinator<_,u32,u32> = YCombinator::new(factorial); let r = factorial(10); assert_eq!(3628800, r); }