//! calculate cognitive complexity and warn about overly complex functions use clippy_utils::diagnostics::span_lint_and_help; use clippy_utils::source::snippet_opt; use clippy_utils::ty::is_type_diagnostic_item; use clippy_utils::visitors::for_each_expr; use clippy_utils::{get_async_fn_body, is_async_fn, LimitStack}; use core::ops::ControlFlow; use rustc_ast::ast::Attribute; use rustc_hir::intravisit::FnKind; use rustc_hir::{Body, Expr, ExprKind, FnDecl, HirId}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::source_map::Span; use rustc_span::{sym, BytePos}; declare_clippy_lint! { /// ### What it does /// Checks for methods with high cognitive complexity. /// /// ### Why is this bad? /// Methods of high cognitive complexity tend to be hard to /// both read and maintain. Also LLVM will tend to optimize small methods better. /// /// ### Known problems /// Sometimes it's hard to find a way to reduce the /// complexity. /// /// ### Example /// You'll see it when you get the warning. #[clippy::version = "1.35.0"] pub COGNITIVE_COMPLEXITY, nursery, "functions that should be split up into multiple functions" } pub struct CognitiveComplexity { limit: LimitStack, } impl CognitiveComplexity { #[must_use] pub fn new(limit: u64) -> Self { Self { limit: LimitStack::new(limit), } } } impl_lint_pass!(CognitiveComplexity => [COGNITIVE_COMPLEXITY]); impl CognitiveComplexity { #[expect(clippy::cast_possible_truncation)] fn check<'tcx>( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, expr: &'tcx Expr<'_>, body_span: Span, ) { if body_span.from_expansion() { return; } let mut cc = 1u64; let mut returns = 0u64; let _: Option = for_each_expr(expr, |e| { match e.kind { ExprKind::If(_, _, _) => { cc += 1; }, ExprKind::Match(_, arms, _) => { if arms.len() > 1 { cc += 1; } cc += arms.iter().filter(|arm| arm.guard.is_some()).count() as u64; }, ExprKind::Ret(_) => returns += 1, _ => {}, } ControlFlow::Continue(()) }); let ret_ty = cx.typeck_results().node_type(expr.hir_id); let ret_adjust = if is_type_diagnostic_item(cx, ret_ty, sym::Result) { returns } else { #[expect(clippy::integer_division)] (returns / 2) }; // prevent degenerate cases where unreachable code contains `return` statements if cc >= ret_adjust { cc -= ret_adjust; } if cc > self.limit.limit() { let fn_span = match kind { FnKind::ItemFn(ident, _, _) | FnKind::Method(ident, _) => ident.span, FnKind::Closure => { let header_span = body_span.with_hi(decl.output.span().lo()); let pos = snippet_opt(cx, header_span).and_then(|snip| { let low_offset = snip.find('|')?; let high_offset = 1 + snip.get(low_offset + 1..)?.find('|')?; let low = header_span.lo() + BytePos(low_offset as u32); let high = low + BytePos(high_offset as u32 + 1); Some((low, high)) }); if let Some((low, high)) = pos { Span::new(low, high, header_span.ctxt(), header_span.parent()) } else { return; } }, }; span_lint_and_help( cx, COGNITIVE_COMPLEXITY, fn_span, &format!( "the function has a cognitive complexity of ({cc}/{})", self.limit.limit() ), None, "you could split it up into multiple smaller functions", ); } } } impl<'tcx> LateLintPass<'tcx> for CognitiveComplexity { fn check_fn( &mut self, cx: &LateContext<'tcx>, kind: FnKind<'tcx>, decl: &'tcx FnDecl<'_>, body: &'tcx Body<'_>, span: Span, hir_id: HirId, ) { let def_id = cx.tcx.hir().local_def_id(hir_id); if !cx.tcx.has_attr(def_id.to_def_id(), sym::test) { let expr = if is_async_fn(kind) { match get_async_fn_body(cx.tcx, body) { Some(b) => b, None => { return; }, } } else { body.value }; self.check(cx, kind, decl, expr, span); } } fn enter_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) { self.limit.push_attrs(cx.sess(), attrs, "cognitive_complexity"); } fn exit_lint_attrs(&mut self, cx: &LateContext<'tcx>, attrs: &'tcx [Attribute]) { self.limit.pop_attrs(cx.sess(), attrs, "cognitive_complexity"); } }