use clippy_utils::diagnostics::span_lint_and_then; use clippy_utils::higher::IfLetOrMatch; use clippy_utils::msrvs::{self, Msrv}; use clippy_utils::peel_blocks; use clippy_utils::source::snippet_with_context; use clippy_utils::ty::is_type_diagnostic_item; use clippy_utils::visitors::{Descend, Visitable}; use if_chain::if_chain; use rustc_data_structures::fx::FxHashSet; use rustc_errors::Applicability; use rustc_hir::intravisit::{walk_expr, Visitor}; use rustc_hir::{Expr, ExprKind, HirId, ItemId, Local, MatchSource, Pat, PatKind, QPath, Stmt, StmtKind, Ty}; use rustc_lint::{LateContext, LateLintPass, LintContext}; use rustc_middle::lint::in_external_macro; use rustc_session::{declare_tool_lint, impl_lint_pass}; use rustc_span::symbol::sym; use rustc_span::Span; use serde::Deserialize; use std::ops::ControlFlow; declare_clippy_lint! { /// ### What it does /// /// Warn of cases where `let...else` could be used /// /// ### Why is this bad? /// /// `let...else` provides a standard construct for this pattern /// that people can easily recognize. It's also more compact. /// /// ### Example /// /// ```rust /// # let w = Some(0); /// let v = if let Some(v) = w { v } else { return }; /// ``` /// /// Could be written: /// /// ```rust /// # #![feature(let_else)] /// # fn main () { /// # let w = Some(0); /// let Some(v) = w else { return }; /// # } /// ``` #[clippy::version = "1.67.0"] pub MANUAL_LET_ELSE, pedantic, "manual implementation of a let...else statement" } pub struct ManualLetElse { msrv: Msrv, matches_behaviour: MatchLintBehaviour, } impl ManualLetElse { #[must_use] pub fn new(msrv: Msrv, matches_behaviour: MatchLintBehaviour) -> Self { Self { msrv, matches_behaviour, } } } impl_lint_pass!(ManualLetElse => [MANUAL_LET_ELSE]); impl<'tcx> LateLintPass<'tcx> for ManualLetElse { fn check_stmt(&mut self, cx: &LateContext<'_>, stmt: &'tcx Stmt<'tcx>) { let if_let_or_match = if_chain! { if self.msrv.meets(msrvs::LET_ELSE); if !in_external_macro(cx.sess(), stmt.span); if let StmtKind::Local(local) = stmt.kind; if let Some(init) = local.init; if local.els.is_none(); if local.ty.is_none(); if init.span.ctxt() == stmt.span.ctxt(); if let Some(if_let_or_match) = IfLetOrMatch::parse(cx, init); then { if_let_or_match } else { return; } }; match if_let_or_match { IfLetOrMatch::IfLet(if_let_expr, let_pat, if_then, if_else) => if_chain! { if expr_is_simple_identity(let_pat, if_then); if let Some(if_else) = if_else; if expr_diverges(cx, if_else); then { emit_manual_let_else(cx, stmt.span, if_let_expr, let_pat, if_else); } }, IfLetOrMatch::Match(match_expr, arms, source) => { if self.matches_behaviour == MatchLintBehaviour::Never { return; } if source != MatchSource::Normal { return; } // Any other number than two arms doesn't (neccessarily) // have a trivial mapping to let else. if arms.len() != 2 { return; } // Guards don't give us an easy mapping either if arms.iter().any(|arm| arm.guard.is_some()) { return; } let check_types = self.matches_behaviour == MatchLintBehaviour::WellKnownTypes; let diverging_arm_opt = arms .iter() .enumerate() .find(|(_, arm)| expr_diverges(cx, arm.body) && pat_allowed_for_else(cx, arm.pat, check_types)); let Some((idx, diverging_arm)) = diverging_arm_opt else { return; }; // If the non-diverging arm is the first one, its pattern can be reused in a let/else statement. // However, if it arrives in second position, its pattern may cover some cases already covered // by the diverging one. // TODO: accept the non-diverging arm as a second position if patterns are disjointed. if idx == 0 { return; } let pat_arm = &arms[1 - idx]; if !expr_is_simple_identity(pat_arm.pat, pat_arm.body) { return; } emit_manual_let_else(cx, stmt.span, match_expr, pat_arm.pat, diverging_arm.body); }, } } extract_msrv_attr!(LateContext); } fn emit_manual_let_else(cx: &LateContext<'_>, span: Span, expr: &Expr<'_>, pat: &Pat<'_>, else_body: &Expr<'_>) { span_lint_and_then( cx, MANUAL_LET_ELSE, span, "this could be rewritten as `let...else`", |diag| { // This is far from perfect, for example there needs to be: // * mut additions for the bindings // * renamings of the bindings // * unused binding collision detection with existing ones // * putting patterns with at the top level | inside () // for this to be machine applicable. let mut app = Applicability::HasPlaceholders; let (sn_pat, _) = snippet_with_context(cx, pat.span, span.ctxt(), "", &mut app); let (sn_expr, _) = snippet_with_context(cx, expr.span, span.ctxt(), "", &mut app); let (sn_else, _) = snippet_with_context(cx, else_body.span, span.ctxt(), "", &mut app); let else_bl = if matches!(else_body.kind, ExprKind::Block(..)) { sn_else.into_owned() } else { format!("{{ {sn_else} }}") }; let sn_bl = if matches!(pat.kind, PatKind::Or(..)) { format!("({sn_pat})") } else { sn_pat.into_owned() }; let sugg = format!("let {sn_bl} = {sn_expr} else {else_bl};"); diag.span_suggestion(span, "consider writing", sugg, app); }, ); } /// Check whether an expression is divergent. May give false negatives. fn expr_diverges(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool { struct V<'cx, 'tcx> { cx: &'cx LateContext<'tcx>, res: ControlFlow<(), Descend>, } impl<'tcx> Visitor<'tcx> for V<'_, '_> { fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) { fn is_never(cx: &LateContext<'_>, expr: &'_ Expr<'_>) -> bool { if let Some(ty) = cx.typeck_results().expr_ty_opt(expr) { return ty.is_never(); } false } if self.res.is_break() { return; } // We can't just call is_never on expr and be done, because the type system // sometimes coerces the ! type to something different before we can get // our hands on it. So instead, we do a manual search. We do fall back to // is_never in some places when there is no better alternative. self.res = match e.kind { ExprKind::Continue(_) | ExprKind::Break(_, _) | ExprKind::Ret(_) => ControlFlow::Break(()), ExprKind::Call(call, _) => { if is_never(self.cx, e) || is_never(self.cx, call) { ControlFlow::Break(()) } else { ControlFlow::Continue(Descend::Yes) } }, ExprKind::MethodCall(..) => { if is_never(self.cx, e) { ControlFlow::Break(()) } else { ControlFlow::Continue(Descend::Yes) } }, ExprKind::If(if_expr, if_then, if_else) => { let else_diverges = if_else.map_or(false, |ex| expr_diverges(self.cx, ex)); let diverges = expr_diverges(self.cx, if_expr) || (else_diverges && expr_diverges(self.cx, if_then)); if diverges { ControlFlow::Break(()) } else { ControlFlow::Continue(Descend::No) } }, ExprKind::Match(match_expr, match_arms, _) => { let diverges = expr_diverges(self.cx, match_expr) || match_arms.iter().all(|arm| { let guard_diverges = arm.guard.as_ref().map_or(false, |g| expr_diverges(self.cx, g.body())); guard_diverges || expr_diverges(self.cx, arm.body) }); if diverges { ControlFlow::Break(()) } else { ControlFlow::Continue(Descend::No) } }, // Don't continue into loops or labeled blocks, as they are breakable, // and we'd have to start checking labels. ExprKind::Block(_, Some(_)) | ExprKind::Loop(..) => ControlFlow::Continue(Descend::No), // Default: descend _ => ControlFlow::Continue(Descend::Yes), }; if let ControlFlow::Continue(Descend::Yes) = self.res { walk_expr(self, e); } } fn visit_local(&mut self, local: &'tcx Local<'_>) { // Don't visit the else block of a let/else statement as it will not make // the statement divergent even though the else block is divergent. if let Some(init) = local.init { self.visit_expr(init); } } // Avoid unnecessary `walk_*` calls. fn visit_ty(&mut self, _: &'tcx Ty<'tcx>) {} fn visit_pat(&mut self, _: &'tcx Pat<'tcx>) {} fn visit_qpath(&mut self, _: &'tcx QPath<'tcx>, _: HirId, _: Span) {} // Avoid monomorphising all `visit_*` functions. fn visit_nested_item(&mut self, _: ItemId) {} } let mut v = V { cx, res: ControlFlow::Continue(Descend::Yes), }; expr.visit(&mut v); v.res.is_break() } fn pat_allowed_for_else(cx: &LateContext<'_>, pat: &'_ Pat<'_>, check_types: bool) -> bool { // Check whether the pattern contains any bindings, as the // binding might potentially be used in the body. // TODO: only look for *used* bindings. let mut has_bindings = false; pat.each_binding_or_first(&mut |_, _, _, _| has_bindings = true); if has_bindings { return false; } // If we shouldn't check the types, exit early. if !check_types { return true; } // Check whether any possibly "unknown" patterns are included, // because users might not know which values some enum has. // Well-known enums are excepted, as we assume people know them. // We do a deep check, to be able to disallow Err(En::Foo(_)) // for usage of the En::Foo variant, as we disallow En::Foo(_), // but we allow Err(_). let typeck_results = cx.typeck_results(); let mut has_disallowed = false; pat.walk_always(|pat| { // Only do the check if the type is "spelled out" in the pattern if !matches!( pat.kind, PatKind::Struct(..) | PatKind::TupleStruct(..) | PatKind::Path(..) ) { return; }; let ty = typeck_results.pat_ty(pat); // Option and Result are allowed, everything else isn't. if !(is_type_diagnostic_item(cx, ty, sym::Option) || is_type_diagnostic_item(cx, ty, sym::Result)) { has_disallowed = true; } }); !has_disallowed } /// Checks if the passed block is a simple identity referring to bindings created by the pattern fn expr_is_simple_identity(pat: &'_ Pat<'_>, expr: &'_ Expr<'_>) -> bool { // We support patterns with multiple bindings and tuples, like: // let ... = if let (Some(foo), bar) = g() { (foo, bar) } else { ... } let peeled = peel_blocks(expr); let paths = match peeled.kind { ExprKind::Tup(exprs) | ExprKind::Array(exprs) => exprs, ExprKind::Path(_) => std::slice::from_ref(peeled), _ => return false, }; let mut pat_bindings = FxHashSet::default(); pat.each_binding_or_first(&mut |_ann, _hir_id, _sp, ident| { pat_bindings.insert(ident); }); if pat_bindings.len() < paths.len() { return false; } for path in paths { if_chain! { if let ExprKind::Path(QPath::Resolved(_ty, path)) = path.kind; if let [path_seg] = path.segments; then { if !pat_bindings.remove(&path_seg.ident) { return false; } } else { return false; } } } true } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Deserialize)] pub enum MatchLintBehaviour { AllTypes, WellKnownTypes, Never, }