use super::implicit_clone::is_clone_like; use super::unnecessary_iter_cloned::{self, is_into_iter}; use clippy_utils::diagnostics::span_lint_and_sugg; use clippy_utils::msrvs::{self, Msrv}; use clippy_utils::source::snippet_opt; use clippy_utils::ty::{get_iterator_item_ty, implements_trait, is_copy, peel_mid_ty_refs}; use clippy_utils::visitors::find_all_ret_expressions; use clippy_utils::{fn_def_id, get_parent_expr, is_diag_item_method, is_diag_trait_item, return_ty}; use rustc_errors::Applicability; use rustc_hir::{def_id::DefId, BorrowKind, Expr, ExprKind, ItemKind, Node}; use rustc_hir_typeck::{FnCtxt, Inherited}; use rustc_infer::infer::TyCtxtInferExt; use rustc_lint::LateContext; use rustc_middle::mir::Mutability; use rustc_middle::ty::adjustment::{Adjust, Adjustment, OverloadedDeref}; use rustc_middle::ty::subst::{GenericArg, GenericArgKind, SubstsRef}; use rustc_middle::ty::{self, Clause, EarlyBinder, ParamTy, PredicateKind, ProjectionPredicate, TraitPredicate, Ty}; use rustc_span::{sym, Symbol}; use rustc_trait_selection::traits::{query::evaluate_obligation::InferCtxtExt as _, Obligation, ObligationCause}; use super::UNNECESSARY_TO_OWNED; pub fn check<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>, method_name: Symbol, receiver: &'tcx Expr<'_>, args: &'tcx [Expr<'_>], msrv: &Msrv, ) { if_chain! { if let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id); if args.is_empty(); then { if is_cloned_or_copied(cx, method_name, method_def_id) { unnecessary_iter_cloned::check(cx, expr, method_name, receiver); } else if is_to_owned_like(cx, expr, method_name, method_def_id) { // At this point, we know the call is of a `to_owned`-like function. The functions // `check_addr_of_expr` and `check_call_arg` determine whether the call is unnecessary // based on its context, that is, whether it is a referent in an `AddrOf` expression, an // argument in a `into_iter` call, or an argument in the call of some other function. if check_addr_of_expr(cx, expr, method_name, method_def_id, receiver) { return; } if check_into_iter_call_arg(cx, expr, method_name, receiver, msrv) { return; } check_other_call_arg(cx, expr, method_name, receiver); } } } } /// Checks whether `expr` is a referent in an `AddrOf` expression and, if so, determines whether its /// call of a `to_owned`-like function is unnecessary. #[allow(clippy::too_many_lines)] fn check_addr_of_expr( cx: &LateContext<'_>, expr: &Expr<'_>, method_name: Symbol, method_def_id: DefId, receiver: &Expr<'_>, ) -> bool { if_chain! { if let Some(parent) = get_parent_expr(cx, expr); if let ExprKind::AddrOf(BorrowKind::Ref, Mutability::Not, _) = parent.kind; let adjustments = cx.typeck_results().expr_adjustments(parent).iter().collect::>(); if let // For matching uses of `Cow::from` [ Adjustment { kind: Adjust::Deref(None), target: referent_ty, }, Adjustment { kind: Adjust::Borrow(_), target: target_ty, }, ] // For matching uses of arrays | [ Adjustment { kind: Adjust::Deref(None), target: referent_ty, }, Adjustment { kind: Adjust::Borrow(_), .. }, Adjustment { kind: Adjust::Pointer(_), target: target_ty, }, ] // For matching everything else | [ Adjustment { kind: Adjust::Deref(None), target: referent_ty, }, Adjustment { kind: Adjust::Deref(Some(OverloadedDeref { .. })), .. }, Adjustment { kind: Adjust::Borrow(_), target: target_ty, }, ] = adjustments[..]; let receiver_ty = cx.typeck_results().expr_ty(receiver); let (target_ty, n_target_refs) = peel_mid_ty_refs(*target_ty); let (receiver_ty, n_receiver_refs) = peel_mid_ty_refs(receiver_ty); // Only flag cases satisfying at least one of the following three conditions: // * the referent and receiver types are distinct // * the referent/receiver type is a copyable array // * the method is `Cow::into_owned` // This restriction is to ensure there is no overlap between `redundant_clone` and this // lint. It also avoids the following false positive: // https://github.com/rust-lang/rust-clippy/issues/8759 // Arrays are a bit of a corner case. Non-copyable arrays are handled by // `redundant_clone`, but copyable arrays are not. if *referent_ty != receiver_ty || (matches!(referent_ty.kind(), ty::Array(..)) && is_copy(cx, *referent_ty)) || is_cow_into_owned(cx, method_name, method_def_id); if let Some(receiver_snippet) = snippet_opt(cx, receiver.span); then { if receiver_ty == target_ty && n_target_refs >= n_receiver_refs { span_lint_and_sugg( cx, UNNECESSARY_TO_OWNED, parent.span, &format!("unnecessary use of `{method_name}`"), "use", format!( "{:&>width$}{receiver_snippet}", "", width = n_target_refs - n_receiver_refs ), Applicability::MachineApplicable, ); return true; } if_chain! { if let Some(deref_trait_id) = cx.tcx.get_diagnostic_item(sym::Deref); if implements_trait(cx, receiver_ty, deref_trait_id, &[]); if cx.get_associated_type(receiver_ty, deref_trait_id, "Target") == Some(target_ty); then { if n_receiver_refs > 0 { span_lint_and_sugg( cx, UNNECESSARY_TO_OWNED, parent.span, &format!("unnecessary use of `{method_name}`"), "use", receiver_snippet, Applicability::MachineApplicable, ); } else { span_lint_and_sugg( cx, UNNECESSARY_TO_OWNED, expr.span.with_lo(receiver.span.hi()), &format!("unnecessary use of `{method_name}`"), "remove this", String::new(), Applicability::MachineApplicable, ); } return true; } } if_chain! { if let Some(as_ref_trait_id) = cx.tcx.get_diagnostic_item(sym::AsRef); if implements_trait(cx, receiver_ty, as_ref_trait_id, &[GenericArg::from(target_ty)]); then { span_lint_and_sugg( cx, UNNECESSARY_TO_OWNED, parent.span, &format!("unnecessary use of `{method_name}`"), "use", format!("{receiver_snippet}.as_ref()"), Applicability::MachineApplicable, ); return true; } } } } false } /// Checks whether `expr` is an argument in an `into_iter` call and, if so, determines whether its /// call of a `to_owned`-like function is unnecessary. fn check_into_iter_call_arg( cx: &LateContext<'_>, expr: &Expr<'_>, method_name: Symbol, receiver: &Expr<'_>, msrv: &Msrv, ) -> bool { if_chain! { if let Some(parent) = get_parent_expr(cx, expr); if let Some(callee_def_id) = fn_def_id(cx, parent); if is_into_iter(cx, callee_def_id); if let Some(iterator_trait_id) = cx.tcx.get_diagnostic_item(sym::Iterator); let parent_ty = cx.typeck_results().expr_ty(parent); if implements_trait(cx, parent_ty, iterator_trait_id, &[]); if let Some(item_ty) = get_iterator_item_ty(cx, parent_ty); if let Some(receiver_snippet) = snippet_opt(cx, receiver.span); then { if unnecessary_iter_cloned::check_for_loop_iter(cx, parent, method_name, receiver, true) { return true; } let cloned_or_copied = if is_copy(cx, item_ty) && msrv.meets(msrvs::ITERATOR_COPIED) { "copied" } else { "cloned" }; // The next suggestion may be incorrect because the removal of the `to_owned`-like // function could cause the iterator to hold a reference to a resource that is used // mutably. See https://github.com/rust-lang/rust-clippy/issues/8148. span_lint_and_sugg( cx, UNNECESSARY_TO_OWNED, parent.span, &format!("unnecessary use of `{method_name}`"), "use", format!("{receiver_snippet}.iter().{cloned_or_copied}()"), Applicability::MaybeIncorrect, ); return true; } } false } /// Checks whether `expr` is an argument in a function call and, if so, determines whether its call /// of a `to_owned`-like function is unnecessary. fn check_other_call_arg<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>, method_name: Symbol, receiver: &'tcx Expr<'tcx>, ) -> bool { if_chain! { if let Some((maybe_call, maybe_arg)) = skip_addr_of_ancestors(cx, expr); if let Some((callee_def_id, _, recv, call_args)) = get_callee_substs_and_args(cx, maybe_call); let fn_sig = cx.tcx.fn_sig(callee_def_id).subst_identity().skip_binder(); if let Some(i) = recv.into_iter().chain(call_args).position(|arg| arg.hir_id == maybe_arg.hir_id); if let Some(input) = fn_sig.inputs().get(i); let (input, n_refs) = peel_mid_ty_refs(*input); if let (trait_predicates, _) = get_input_traits_and_projections(cx, callee_def_id, input); if let Some(sized_def_id) = cx.tcx.lang_items().sized_trait(); if let [trait_predicate] = trait_predicates .iter() .filter(|trait_predicate| trait_predicate.def_id() != sized_def_id) .collect::>()[..]; if let Some(deref_trait_id) = cx.tcx.get_diagnostic_item(sym::Deref); if let Some(as_ref_trait_id) = cx.tcx.get_diagnostic_item(sym::AsRef); if trait_predicate.def_id() == deref_trait_id || trait_predicate.def_id() == as_ref_trait_id; let receiver_ty = cx.typeck_results().expr_ty(receiver); // We can't add an `&` when the trait is `Deref` because `Target = &T` won't match // `Target = T`. if let Some((n_refs, receiver_ty)) = if n_refs > 0 || is_copy(cx, receiver_ty) { Some((n_refs, receiver_ty)) } else if trait_predicate.def_id() != deref_trait_id { Some((1, cx.tcx.mk_ref( cx.tcx.lifetimes.re_erased, ty::TypeAndMut { ty: receiver_ty, mutbl: Mutability::Not, }, ))) } else { None }; if can_change_type(cx, maybe_arg, receiver_ty); if let Some(receiver_snippet) = snippet_opt(cx, receiver.span); then { span_lint_and_sugg( cx, UNNECESSARY_TO_OWNED, maybe_arg.span, &format!("unnecessary use of `{method_name}`"), "use", format!("{:&>n_refs$}{receiver_snippet}", ""), Applicability::MachineApplicable, ); return true; } } false } /// Walks an expression's ancestors until it finds a non-`AddrOf` expression. Returns the first such /// expression found (if any) along with the immediately prior expression. fn skip_addr_of_ancestors<'tcx>( cx: &LateContext<'tcx>, mut expr: &'tcx Expr<'tcx>, ) -> Option<(&'tcx Expr<'tcx>, &'tcx Expr<'tcx>)> { while let Some(parent) = get_parent_expr(cx, expr) { if let ExprKind::AddrOf(BorrowKind::Ref, Mutability::Not, _) = parent.kind { expr = parent; } else { return Some((parent, expr)); } } None } /// Checks whether an expression is a function or method call and, if so, returns its `DefId`, /// `Substs`, and arguments. fn get_callee_substs_and_args<'tcx>( cx: &LateContext<'tcx>, expr: &'tcx Expr<'tcx>, ) -> Option<(DefId, SubstsRef<'tcx>, Option<&'tcx Expr<'tcx>>, &'tcx [Expr<'tcx>])> { if_chain! { if let ExprKind::Call(callee, args) = expr.kind; let callee_ty = cx.typeck_results().expr_ty(callee); if let ty::FnDef(callee_def_id, _) = callee_ty.kind(); then { let substs = cx.typeck_results().node_substs(callee.hir_id); return Some((*callee_def_id, substs, None, args)); } } if_chain! { if let ExprKind::MethodCall(_, recv, args, _) = expr.kind; if let Some(method_def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id); then { let substs = cx.typeck_results().node_substs(expr.hir_id); return Some((method_def_id, substs, Some(recv), args)); } } None } /// Returns the `TraitPredicate`s and `ProjectionPredicate`s for a function's input type. fn get_input_traits_and_projections<'tcx>( cx: &LateContext<'tcx>, callee_def_id: DefId, input: Ty<'tcx>, ) -> (Vec>, Vec>) { let mut trait_predicates = Vec::new(); let mut projection_predicates = Vec::new(); for predicate in cx.tcx.param_env(callee_def_id).caller_bounds() { match predicate.kind().skip_binder() { PredicateKind::Clause(Clause::Trait(trait_predicate)) => { if trait_predicate.trait_ref.self_ty() == input { trait_predicates.push(trait_predicate); } }, PredicateKind::Clause(Clause::Projection(projection_predicate)) => { if projection_predicate.projection_ty.self_ty() == input { projection_predicates.push(projection_predicate); } }, _ => {}, } } (trait_predicates, projection_predicates) } fn can_change_type<'a>(cx: &LateContext<'a>, mut expr: &'a Expr<'a>, mut ty: Ty<'a>) -> bool { for (_, node) in cx.tcx.hir().parent_iter(expr.hir_id) { match node { Node::Stmt(_) => return true, Node::Block(..) => continue, Node::Item(item) => { if let ItemKind::Fn(_, _, body_id) = &item.kind && let output_ty = return_ty(cx, item.owner_id) && Inherited::build(cx.tcx, item.owner_id.def_id).enter(|inherited| { let fn_ctxt = FnCtxt::new(inherited, cx.param_env, item.owner_id.def_id); fn_ctxt.can_coerce(ty, output_ty) }) { if has_lifetime(output_ty) && has_lifetime(ty) { return false; } let body = cx.tcx.hir().body(*body_id); let body_expr = &body.value; let mut count = 0; return find_all_ret_expressions(cx, body_expr, |_| { count += 1; count <= 1 }); } } Node::Expr(parent_expr) => { if let Some((callee_def_id, call_substs, recv, call_args)) = get_callee_substs_and_args(cx, parent_expr) { let fn_sig = cx.tcx.fn_sig(callee_def_id).subst_identity().skip_binder(); if let Some(arg_index) = recv.into_iter().chain(call_args).position(|arg| arg.hir_id == expr.hir_id) && let Some(param_ty) = fn_sig.inputs().get(arg_index) && let ty::Param(ParamTy { index: param_index , ..}) = param_ty.kind() // https://github.com/rust-lang/rust-clippy/issues/9504 and https://github.com/rust-lang/rust-clippy/issues/10021 && (*param_index as usize) < call_substs.len() { if fn_sig .inputs() .iter() .enumerate() .filter(|(i, _)| *i != arg_index) .any(|(_, ty)| ty.contains(*param_ty)) { return false; } let mut trait_predicates = cx.tcx.param_env(callee_def_id) .caller_bounds().iter().filter(|predicate| { if let PredicateKind::Clause(Clause::Trait(trait_predicate)) = predicate.kind().skip_binder() && trait_predicate.trait_ref.self_ty() == *param_ty { true } else { false } }); let new_subst = cx.tcx.mk_substs_from_iter( call_substs.iter() .enumerate() .map(|(i, t)| if i == (*param_index as usize) { GenericArg::from(ty) } else { t })); if trait_predicates.any(|predicate| { let predicate = EarlyBinder(predicate).subst(cx.tcx, new_subst); let obligation = Obligation::new(cx.tcx, ObligationCause::dummy(), cx.param_env, predicate); !cx.tcx.infer_ctxt().build().predicate_must_hold_modulo_regions(&obligation) }) { return false; } let output_ty = fn_sig.output(); if output_ty.contains(*param_ty) { if let Ok(new_ty) = cx.tcx.try_subst_and_normalize_erasing_regions( new_subst, cx.param_env, output_ty) { expr = parent_expr; ty = new_ty; continue; } return false; } return true; } } else if let ExprKind::Block(..) = parent_expr.kind { continue; } return false; }, _ => return false, } } false } fn has_lifetime(ty: Ty<'_>) -> bool { ty.walk().any(|t| matches!(t.unpack(), GenericArgKind::Lifetime(_))) } /// Returns true if the named method is `Iterator::cloned` or `Iterator::copied`. fn is_cloned_or_copied(cx: &LateContext<'_>, method_name: Symbol, method_def_id: DefId) -> bool { (method_name.as_str() == "cloned" || method_name.as_str() == "copied") && is_diag_trait_item(cx, method_def_id, sym::Iterator) } /// Returns true if the named method can be used to convert the receiver to its "owned" /// representation. fn is_to_owned_like<'a>(cx: &LateContext<'a>, call_expr: &Expr<'a>, method_name: Symbol, method_def_id: DefId) -> bool { is_clone_like(cx, method_name.as_str(), method_def_id) || is_cow_into_owned(cx, method_name, method_def_id) || is_to_string_on_string_like(cx, call_expr, method_name, method_def_id) } /// Returns true if the named method is `Cow::into_owned`. fn is_cow_into_owned(cx: &LateContext<'_>, method_name: Symbol, method_def_id: DefId) -> bool { method_name.as_str() == "into_owned" && is_diag_item_method(cx, method_def_id, sym::Cow) } /// Returns true if the named method is `ToString::to_string` and it's called on a type that /// is string-like i.e. implements `AsRef` or `Deref`. fn is_to_string_on_string_like<'a>( cx: &LateContext<'_>, call_expr: &'a Expr<'a>, method_name: Symbol, method_def_id: DefId, ) -> bool { if method_name != sym::to_string || !is_diag_trait_item(cx, method_def_id, sym::ToString) { return false; } if let Some(substs) = cx.typeck_results().node_substs_opt(call_expr.hir_id) && let [generic_arg] = substs.as_slice() && let GenericArgKind::Type(ty) = generic_arg.unpack() && let Some(deref_trait_id) = cx.tcx.get_diagnostic_item(sym::Deref) && let Some(as_ref_trait_id) = cx.tcx.get_diagnostic_item(sym::AsRef) && (cx.get_associated_type(ty, deref_trait_id, "Target") == Some(cx.tcx.types.str_) || implements_trait(cx, ty, as_ref_trait_id, &[cx.tcx.types.str_.into()])) { true } else { false } }