use crate::consts::constant_simple; use crate::macros::macro_backtrace; use crate::source::snippet_opt; use rustc_ast::ast::InlineAsmTemplatePiece; use rustc_data_structures::fx::FxHasher; use rustc_hir::def::Res; use rustc_hir::HirIdMap; use rustc_hir::{ ArrayLen, BinOpKind, BindingAnnotation, Block, BodyId, Closure, Expr, ExprField, ExprKind, FnRetTy, GenericArg, GenericArgs, Guard, HirId, InlineAsmOperand, Let, Lifetime, LifetimeName, Pat, PatField, PatKind, Path, PathSegment, PrimTy, QPath, Stmt, StmtKind, Ty, TyKind, TypeBinding, }; use rustc_lexer::{tokenize, TokenKind}; use rustc_lint::LateContext; use rustc_middle::ty::TypeckResults; use rustc_span::{sym, Symbol}; use std::hash::{Hash, Hasher}; /// Callback that is called when two expressions are not equal in the sense of `SpanlessEq`, but /// other conditions would make them equal. type SpanlessEqCallback<'a> = dyn FnMut(&Expr<'_>, &Expr<'_>) -> bool + 'a; /// Type used to check whether two ast are the same. This is different from the /// operator `==` on ast types as this operator would compare true equality with /// ID and span. /// /// Note that some expressions kinds are not considered but could be added. pub struct SpanlessEq<'a, 'tcx> { /// Context used to evaluate constant expressions. cx: &'a LateContext<'tcx>, maybe_typeck_results: Option<(&'tcx TypeckResults<'tcx>, &'tcx TypeckResults<'tcx>)>, allow_side_effects: bool, expr_fallback: Option>>, } impl<'a, 'tcx> SpanlessEq<'a, 'tcx> { pub fn new(cx: &'a LateContext<'tcx>) -> Self { Self { cx, maybe_typeck_results: cx.maybe_typeck_results().map(|x| (x, x)), allow_side_effects: true, expr_fallback: None, } } /// Consider expressions containing potential side effects as not equal. #[must_use] pub fn deny_side_effects(self) -> Self { Self { allow_side_effects: false, ..self } } #[must_use] pub fn expr_fallback(self, expr_fallback: impl FnMut(&Expr<'_>, &Expr<'_>) -> bool + 'a) -> Self { Self { expr_fallback: Some(Box::new(expr_fallback)), ..self } } /// Use this method to wrap comparisons that may involve inter-expression context. /// See `self.locals`. pub fn inter_expr(&mut self) -> HirEqInterExpr<'_, 'a, 'tcx> { HirEqInterExpr { inner: self, locals: HirIdMap::default(), } } pub fn eq_block(&mut self, left: &Block<'_>, right: &Block<'_>) -> bool { self.inter_expr().eq_block(left, right) } pub fn eq_expr(&mut self, left: &Expr<'_>, right: &Expr<'_>) -> bool { self.inter_expr().eq_expr(left, right) } pub fn eq_path(&mut self, left: &Path<'_>, right: &Path<'_>) -> bool { self.inter_expr().eq_path(left, right) } pub fn eq_path_segment(&mut self, left: &PathSegment<'_>, right: &PathSegment<'_>) -> bool { self.inter_expr().eq_path_segment(left, right) } pub fn eq_path_segments(&mut self, left: &[PathSegment<'_>], right: &[PathSegment<'_>]) -> bool { self.inter_expr().eq_path_segments(left, right) } } pub struct HirEqInterExpr<'a, 'b, 'tcx> { inner: &'a mut SpanlessEq<'b, 'tcx>, // When binding are declared, the binding ID in the left expression is mapped to the one on the // right. For example, when comparing `{ let x = 1; x + 2 }` and `{ let y = 1; y + 2 }`, // these blocks are considered equal since `x` is mapped to `y`. pub locals: HirIdMap, } impl HirEqInterExpr<'_, '_, '_> { pub fn eq_stmt(&mut self, left: &Stmt<'_>, right: &Stmt<'_>) -> bool { match (&left.kind, &right.kind) { (&StmtKind::Local(l), &StmtKind::Local(r)) => { // This additional check ensures that the type of the locals are equivalent even if the init // expression or type have some inferred parts. if let Some((typeck_lhs, typeck_rhs)) = self.inner.maybe_typeck_results { let l_ty = typeck_lhs.pat_ty(l.pat); let r_ty = typeck_rhs.pat_ty(r.pat); if l_ty != r_ty { return false; } } // eq_pat adds the HirIds to the locals map. We therefore call it last to make sure that // these only get added if the init and type is equal. both(&l.init, &r.init, |l, r| self.eq_expr(l, r)) && both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && both(&l.els, &r.els, |l, r| self.eq_block(l, r)) && self.eq_pat(l.pat, r.pat) }, (&StmtKind::Expr(l), &StmtKind::Expr(r)) | (&StmtKind::Semi(l), &StmtKind::Semi(r)) => self.eq_expr(l, r), _ => false, } } /// Checks whether two blocks are the same. fn eq_block(&mut self, left: &Block<'_>, right: &Block<'_>) -> bool { match (left.stmts, left.expr, right.stmts, right.expr) { ([], None, [], None) => { // For empty blocks, check to see if the tokens are equal. This will catch the case where a macro // expanded to nothing, or the cfg attribute was used. let (Some(left), Some(right)) = ( snippet_opt(self.inner.cx, left.span), snippet_opt(self.inner.cx, right.span), ) else { return true }; let mut left_pos = 0; let left = tokenize(&left) .map(|t| { let end = left_pos + t.len as usize; let s = &left[left_pos..end]; left_pos = end; (t, s) }) .filter(|(t, _)| { !matches!( t.kind, TokenKind::LineComment { .. } | TokenKind::BlockComment { .. } | TokenKind::Whitespace ) }) .map(|(_, s)| s); let mut right_pos = 0; let right = tokenize(&right) .map(|t| { let end = right_pos + t.len as usize; let s = &right[right_pos..end]; right_pos = end; (t, s) }) .filter(|(t, _)| { !matches!( t.kind, TokenKind::LineComment { .. } | TokenKind::BlockComment { .. } | TokenKind::Whitespace ) }) .map(|(_, s)| s); left.eq(right) }, _ => { over(left.stmts, right.stmts, |l, r| self.eq_stmt(l, r)) && both(&left.expr, &right.expr, |l, r| self.eq_expr(l, r)) }, } } fn should_ignore(&mut self, expr: &Expr<'_>) -> bool { macro_backtrace(expr.span).last().map_or(false, |macro_call| { matches!( &self.inner.cx.tcx.get_diagnostic_name(macro_call.def_id), Some(sym::todo_macro | sym::unimplemented_macro) ) }) } pub fn eq_array_length(&mut self, left: ArrayLen, right: ArrayLen) -> bool { match (left, right) { (ArrayLen::Infer(..), ArrayLen::Infer(..)) => true, (ArrayLen::Body(l_ct), ArrayLen::Body(r_ct)) => self.eq_body(l_ct.body, r_ct.body), (_, _) => false, } } pub fn eq_body(&mut self, left: BodyId, right: BodyId) -> bool { // swap out TypeckResults when hashing a body let old_maybe_typeck_results = self.inner.maybe_typeck_results.replace(( self.inner.cx.tcx.typeck_body(left), self.inner.cx.tcx.typeck_body(right), )); let res = self.eq_expr( self.inner.cx.tcx.hir().body(left).value, self.inner.cx.tcx.hir().body(right).value, ); self.inner.maybe_typeck_results = old_maybe_typeck_results; res } #[expect(clippy::similar_names)] pub fn eq_expr(&mut self, left: &Expr<'_>, right: &Expr<'_>) -> bool { if !self.inner.allow_side_effects && left.span.ctxt() != right.span.ctxt() { return false; } if let Some((typeck_lhs, typeck_rhs)) = self.inner.maybe_typeck_results { if let (Some(l), Some(r)) = ( constant_simple(self.inner.cx, typeck_lhs, left), constant_simple(self.inner.cx, typeck_rhs, right), ) { if l == r { return true; } } } let is_eq = match ( reduce_exprkind(self.inner.cx, &left.kind), reduce_exprkind(self.inner.cx, &right.kind), ) { (&ExprKind::AddrOf(lb, l_mut, le), &ExprKind::AddrOf(rb, r_mut, re)) => { lb == rb && l_mut == r_mut && self.eq_expr(le, re) }, (&ExprKind::Continue(li), &ExprKind::Continue(ri)) => { both(&li.label, &ri.label, |l, r| l.ident.name == r.ident.name) }, (&ExprKind::Assign(ll, lr, _), &ExprKind::Assign(rl, rr, _)) => { self.inner.allow_side_effects && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }, (&ExprKind::AssignOp(ref lo, ll, lr), &ExprKind::AssignOp(ref ro, rl, rr)) => { self.inner.allow_side_effects && lo.node == ro.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }, (&ExprKind::Block(l, _), &ExprKind::Block(r, _)) => self.eq_block(l, r), (&ExprKind::Binary(l_op, ll, lr), &ExprKind::Binary(r_op, rl, rr)) => { l_op.node == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) || swap_binop(l_op.node, ll, lr).map_or(false, |(l_op, ll, lr)| { l_op == r_op.node && self.eq_expr(ll, rl) && self.eq_expr(lr, rr) }) }, (&ExprKind::Break(li, ref le), &ExprKind::Break(ri, ref re)) => { both(&li.label, &ri.label, |l, r| l.ident.name == r.ident.name) && both(le, re, |l, r| self.eq_expr(l, r)) }, (&ExprKind::Box(l), &ExprKind::Box(r)) => self.eq_expr(l, r), (&ExprKind::Call(l_fun, l_args), &ExprKind::Call(r_fun, r_args)) => { self.inner.allow_side_effects && self.eq_expr(l_fun, r_fun) && self.eq_exprs(l_args, r_args) }, (&ExprKind::Cast(lx, lt), &ExprKind::Cast(rx, rt)) | (&ExprKind::Type(lx, lt), &ExprKind::Type(rx, rt)) => { self.eq_expr(lx, rx) && self.eq_ty(lt, rt) }, (&ExprKind::Field(l_f_exp, ref l_f_ident), &ExprKind::Field(r_f_exp, ref r_f_ident)) => { l_f_ident.name == r_f_ident.name && self.eq_expr(l_f_exp, r_f_exp) }, (&ExprKind::Index(la, li), &ExprKind::Index(ra, ri)) => self.eq_expr(la, ra) && self.eq_expr(li, ri), (&ExprKind::If(lc, lt, ref le), &ExprKind::If(rc, rt, ref re)) => { self.eq_expr(lc, rc) && self.eq_expr(lt, rt) && both(le, re, |l, r| self.eq_expr(l, r)) }, (&ExprKind::Let(l), &ExprKind::Let(r)) => { self.eq_pat(l.pat, r.pat) && both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && self.eq_expr(l.init, r.init) }, (ExprKind::Lit(l), ExprKind::Lit(r)) => l.node == r.node, (&ExprKind::Loop(lb, ref ll, ref lls, _), &ExprKind::Loop(rb, ref rl, ref rls, _)) => { lls == rls && self.eq_block(lb, rb) && both(ll, rl, |l, r| l.ident.name == r.ident.name) }, (&ExprKind::Match(le, la, ref ls), &ExprKind::Match(re, ra, ref rs)) => { ls == rs && self.eq_expr(le, re) && over(la, ra, |l, r| { self.eq_pat(l.pat, r.pat) && both(&l.guard, &r.guard, |l, r| self.eq_guard(l, r)) && self.eq_expr(l.body, r.body) }) }, ( &ExprKind::MethodCall(l_path, l_receiver, l_args, _), &ExprKind::MethodCall(r_path, r_receiver, r_args, _), ) => { self.inner.allow_side_effects && self.eq_path_segment(l_path, r_path) && self.eq_expr(l_receiver, r_receiver) && self.eq_exprs(l_args, r_args) }, (&ExprKind::Repeat(le, ll), &ExprKind::Repeat(re, rl)) => { self.eq_expr(le, re) && self.eq_array_length(ll, rl) }, (ExprKind::Ret(l), ExprKind::Ret(r)) => both(l, r, |l, r| self.eq_expr(l, r)), (ExprKind::Path(l), ExprKind::Path(r)) => self.eq_qpath(l, r), (&ExprKind::Struct(l_path, lf, ref lo), &ExprKind::Struct(r_path, rf, ref ro)) => { self.eq_qpath(l_path, r_path) && both(lo, ro, |l, r| self.eq_expr(l, r)) && over(lf, rf, |l, r| self.eq_expr_field(l, r)) }, (&ExprKind::Tup(l_tup), &ExprKind::Tup(r_tup)) => self.eq_exprs(l_tup, r_tup), (&ExprKind::Unary(l_op, le), &ExprKind::Unary(r_op, re)) => l_op == r_op && self.eq_expr(le, re), (&ExprKind::Array(l), &ExprKind::Array(r)) => self.eq_exprs(l, r), (&ExprKind::DropTemps(le), &ExprKind::DropTemps(re)) => self.eq_expr(le, re), _ => false, }; (is_eq && (!self.should_ignore(left) || !self.should_ignore(right))) || self.inner.expr_fallback.as_mut().map_or(false, |f| f(left, right)) } fn eq_exprs(&mut self, left: &[Expr<'_>], right: &[Expr<'_>]) -> bool { over(left, right, |l, r| self.eq_expr(l, r)) } fn eq_expr_field(&mut self, left: &ExprField<'_>, right: &ExprField<'_>) -> bool { left.ident.name == right.ident.name && self.eq_expr(left.expr, right.expr) } fn eq_guard(&mut self, left: &Guard<'_>, right: &Guard<'_>) -> bool { match (left, right) { (Guard::If(l), Guard::If(r)) => self.eq_expr(l, r), (Guard::IfLet(l), Guard::IfLet(r)) => { self.eq_pat(l.pat, r.pat) && both(&l.ty, &r.ty, |l, r| self.eq_ty(l, r)) && self.eq_expr(l.init, r.init) }, _ => false, } } fn eq_generic_arg(&mut self, left: &GenericArg<'_>, right: &GenericArg<'_>) -> bool { match (left, right) { (GenericArg::Const(l), GenericArg::Const(r)) => self.eq_body(l.value.body, r.value.body), (GenericArg::Lifetime(l_lt), GenericArg::Lifetime(r_lt)) => Self::eq_lifetime(l_lt, r_lt), (GenericArg::Type(l_ty), GenericArg::Type(r_ty)) => self.eq_ty(l_ty, r_ty), (GenericArg::Infer(l_inf), GenericArg::Infer(r_inf)) => self.eq_ty(&l_inf.to_ty(), &r_inf.to_ty()), _ => false, } } fn eq_lifetime(left: &Lifetime, right: &Lifetime) -> bool { left.res == right.res } fn eq_pat_field(&mut self, left: &PatField<'_>, right: &PatField<'_>) -> bool { let (PatField { ident: li, pat: lp, .. }, PatField { ident: ri, pat: rp, .. }) = (&left, &right); li.name == ri.name && self.eq_pat(lp, rp) } /// Checks whether two patterns are the same. fn eq_pat(&mut self, left: &Pat<'_>, right: &Pat<'_>) -> bool { match (&left.kind, &right.kind) { (&PatKind::Box(l), &PatKind::Box(r)) => self.eq_pat(l, r), (&PatKind::Struct(ref lp, la, ..), &PatKind::Struct(ref rp, ra, ..)) => { self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat_field(l, r)) }, (&PatKind::TupleStruct(ref lp, la, ls), &PatKind::TupleStruct(ref rp, ra, rs)) => { self.eq_qpath(lp, rp) && over(la, ra, |l, r| self.eq_pat(l, r)) && ls == rs }, (&PatKind::Binding(lb, li, _, ref lp), &PatKind::Binding(rb, ri, _, ref rp)) => { let eq = lb == rb && both(lp, rp, |l, r| self.eq_pat(l, r)); if eq { self.locals.insert(li, ri); } eq }, (PatKind::Path(l), PatKind::Path(r)) => self.eq_qpath(l, r), (&PatKind::Lit(l), &PatKind::Lit(r)) => self.eq_expr(l, r), (&PatKind::Tuple(l, ls), &PatKind::Tuple(r, rs)) => ls == rs && over(l, r, |l, r| self.eq_pat(l, r)), (&PatKind::Range(ref ls, ref le, li), &PatKind::Range(ref rs, ref re, ri)) => { both(ls, rs, |a, b| self.eq_expr(a, b)) && both(le, re, |a, b| self.eq_expr(a, b)) && (li == ri) }, (&PatKind::Ref(le, ref lm), &PatKind::Ref(re, ref rm)) => lm == rm && self.eq_pat(le, re), (&PatKind::Slice(ls, ref li, le), &PatKind::Slice(rs, ref ri, re)) => { over(ls, rs, |l, r| self.eq_pat(l, r)) && over(le, re, |l, r| self.eq_pat(l, r)) && both(li, ri, |l, r| self.eq_pat(l, r)) }, (&PatKind::Wild, &PatKind::Wild) => true, _ => false, } } #[expect(clippy::similar_names)] fn eq_qpath(&mut self, left: &QPath<'_>, right: &QPath<'_>) -> bool { match (left, right) { (&QPath::Resolved(ref lty, lpath), &QPath::Resolved(ref rty, rpath)) => { both(lty, rty, |l, r| self.eq_ty(l, r)) && self.eq_path(lpath, rpath) }, (&QPath::TypeRelative(lty, lseg), &QPath::TypeRelative(rty, rseg)) => { self.eq_ty(lty, rty) && self.eq_path_segment(lseg, rseg) }, (&QPath::LangItem(llang_item, ..), &QPath::LangItem(rlang_item, ..)) => llang_item == rlang_item, _ => false, } } pub fn eq_path(&mut self, left: &Path<'_>, right: &Path<'_>) -> bool { match (left.res, right.res) { (Res::Local(l), Res::Local(r)) => l == r || self.locals.get(&l) == Some(&r), (Res::Local(_), _) | (_, Res::Local(_)) => false, _ => over(left.segments, right.segments, |l, r| self.eq_path_segment(l, r)), } } fn eq_path_parameters(&mut self, left: &GenericArgs<'_>, right: &GenericArgs<'_>) -> bool { if !(left.parenthesized || right.parenthesized) { over(left.args, right.args, |l, r| self.eq_generic_arg(l, r)) // FIXME(flip1995): may not work && over(left.bindings, right.bindings, |l, r| self.eq_type_binding(l, r)) } else if left.parenthesized && right.parenthesized { over(left.inputs(), right.inputs(), |l, r| self.eq_ty(l, r)) && both(&Some(&left.bindings[0].ty()), &Some(&right.bindings[0].ty()), |l, r| { self.eq_ty(l, r) }) } else { false } } pub fn eq_path_segments(&mut self, left: &[PathSegment<'_>], right: &[PathSegment<'_>]) -> bool { left.len() == right.len() && left.iter().zip(right).all(|(l, r)| self.eq_path_segment(l, r)) } pub fn eq_path_segment(&mut self, left: &PathSegment<'_>, right: &PathSegment<'_>) -> bool { // The == of idents doesn't work with different contexts, // we have to be explicit about hygiene left.ident.name == right.ident.name && both(&left.args, &right.args, |l, r| self.eq_path_parameters(l, r)) } pub fn eq_ty(&mut self, left: &Ty<'_>, right: &Ty<'_>) -> bool { match (&left.kind, &right.kind) { (&TyKind::Slice(l_vec), &TyKind::Slice(r_vec)) => self.eq_ty(l_vec, r_vec), (&TyKind::Array(lt, ll), &TyKind::Array(rt, rl)) => self.eq_ty(lt, rt) && self.eq_array_length(ll, rl), (TyKind::Ptr(l_mut), TyKind::Ptr(r_mut)) => l_mut.mutbl == r_mut.mutbl && self.eq_ty(l_mut.ty, r_mut.ty), (TyKind::Ref(_, l_rmut), TyKind::Ref(_, r_rmut)) => { l_rmut.mutbl == r_rmut.mutbl && self.eq_ty(l_rmut.ty, r_rmut.ty) }, (TyKind::Path(l), TyKind::Path(r)) => self.eq_qpath(l, r), (&TyKind::Tup(l), &TyKind::Tup(r)) => over(l, r, |l, r| self.eq_ty(l, r)), (&TyKind::Infer, &TyKind::Infer) => true, _ => false, } } fn eq_type_binding(&mut self, left: &TypeBinding<'_>, right: &TypeBinding<'_>) -> bool { left.ident.name == right.ident.name && self.eq_ty(left.ty(), right.ty()) } } /// Some simple reductions like `{ return }` => `return` fn reduce_exprkind<'hir>(cx: &LateContext<'_>, kind: &'hir ExprKind<'hir>) -> &'hir ExprKind<'hir> { if let ExprKind::Block(block, _) = kind { match (block.stmts, block.expr) { // From an `if let` expression without an `else` block. The arm for the implicit wild pattern is an empty // block with an empty span. ([], None) if block.span.is_empty() => &ExprKind::Tup(&[]), // `{}` => `()` ([], None) => match snippet_opt(cx, block.span) { // Don't reduce if there are any tokens contained in the braces Some(snip) if tokenize(&snip) .map(|t| t.kind) .filter(|t| { !matches!( t, TokenKind::LineComment { .. } | TokenKind::BlockComment { .. } | TokenKind::Whitespace ) }) .ne([TokenKind::OpenBrace, TokenKind::CloseBrace].iter().copied()) => { kind }, _ => &ExprKind::Tup(&[]), }, ([], Some(expr)) => match expr.kind { // `{ return .. }` => `return ..` ExprKind::Ret(..) => &expr.kind, _ => kind, }, ([stmt], None) => match stmt.kind { StmtKind::Expr(expr) | StmtKind::Semi(expr) => match expr.kind { // `{ return ..; }` => `return ..` ExprKind::Ret(..) => &expr.kind, _ => kind, }, _ => kind, }, _ => kind, } } else { kind } } fn swap_binop<'a>( binop: BinOpKind, lhs: &'a Expr<'a>, rhs: &'a Expr<'a>, ) -> Option<(BinOpKind, &'a Expr<'a>, &'a Expr<'a>)> { match binop { BinOpKind::Add | BinOpKind::Eq | BinOpKind::Ne | BinOpKind::BitAnd | BinOpKind::BitXor | BinOpKind::BitOr => { Some((binop, rhs, lhs)) }, BinOpKind::Lt => Some((BinOpKind::Gt, rhs, lhs)), BinOpKind::Le => Some((BinOpKind::Ge, rhs, lhs)), BinOpKind::Ge => Some((BinOpKind::Le, rhs, lhs)), BinOpKind::Gt => Some((BinOpKind::Lt, rhs, lhs)), BinOpKind::Mul // Not always commutative, e.g. with matrices. See issue #5698 | BinOpKind::Shl | BinOpKind::Shr | BinOpKind::Rem | BinOpKind::Sub | BinOpKind::Div | BinOpKind::And | BinOpKind::Or => None, } } /// Checks if the two `Option`s are both `None` or some equal values as per /// `eq_fn`. pub fn both(l: &Option, r: &Option, mut eq_fn: impl FnMut(&X, &X) -> bool) -> bool { l.as_ref() .map_or_else(|| r.is_none(), |x| r.as_ref().map_or(false, |y| eq_fn(x, y))) } /// Checks if two slices are equal as per `eq_fn`. pub fn over(left: &[X], right: &[X], mut eq_fn: impl FnMut(&X, &X) -> bool) -> bool { left.len() == right.len() && left.iter().zip(right).all(|(x, y)| eq_fn(x, y)) } /// Counts how many elements of the slices are equal as per `eq_fn`. pub fn count_eq( left: &mut dyn Iterator, right: &mut dyn Iterator, mut eq_fn: impl FnMut(&X, &X) -> bool, ) -> usize { left.zip(right).take_while(|(l, r)| eq_fn(l, r)).count() } /// Checks if two expressions evaluate to the same value, and don't contain any side effects. pub fn eq_expr_value(cx: &LateContext<'_>, left: &Expr<'_>, right: &Expr<'_>) -> bool { SpanlessEq::new(cx).deny_side_effects().eq_expr(left, right) } /// Type used to hash an ast element. This is different from the `Hash` trait /// on ast types as this /// trait would consider IDs and spans. /// /// All expressions kind are hashed, but some might have a weaker hash. pub struct SpanlessHash<'a, 'tcx> { /// Context used to evaluate constant expressions. cx: &'a LateContext<'tcx>, maybe_typeck_results: Option<&'tcx TypeckResults<'tcx>>, s: FxHasher, } impl<'a, 'tcx> SpanlessHash<'a, 'tcx> { pub fn new(cx: &'a LateContext<'tcx>) -> Self { Self { cx, maybe_typeck_results: cx.maybe_typeck_results(), s: FxHasher::default(), } } pub fn finish(self) -> u64 { self.s.finish() } pub fn hash_block(&mut self, b: &Block<'_>) { for s in b.stmts { self.hash_stmt(s); } if let Some(e) = b.expr { self.hash_expr(e); } std::mem::discriminant(&b.rules).hash(&mut self.s); } #[expect(clippy::too_many_lines)] pub fn hash_expr(&mut self, e: &Expr<'_>) { let simple_const = self .maybe_typeck_results .and_then(|typeck_results| constant_simple(self.cx, typeck_results, e)); // const hashing may result in the same hash as some unrelated node, so add a sort of // discriminant depending on which path we're choosing next simple_const.hash(&mut self.s); if simple_const.is_some() { return; } std::mem::discriminant(&e.kind).hash(&mut self.s); match e.kind { ExprKind::AddrOf(kind, m, e) => { std::mem::discriminant(&kind).hash(&mut self.s); m.hash(&mut self.s); self.hash_expr(e); }, ExprKind::Continue(i) => { if let Some(i) = i.label { self.hash_name(i.ident.name); } }, ExprKind::Assign(l, r, _) => { self.hash_expr(l); self.hash_expr(r); }, ExprKind::AssignOp(ref o, l, r) => { std::mem::discriminant(&o.node).hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprKind::Block(b, _) => { self.hash_block(b); }, ExprKind::Binary(op, l, r) => { std::mem::discriminant(&op.node).hash(&mut self.s); self.hash_expr(l); self.hash_expr(r); }, ExprKind::Break(i, ref j) => { if let Some(i) = i.label { self.hash_name(i.ident.name); } if let Some(j) = *j { self.hash_expr(j); } }, ExprKind::Box(e) | ExprKind::DropTemps(e) | ExprKind::Yield(e, _) => { self.hash_expr(e); }, ExprKind::Call(fun, args) => { self.hash_expr(fun); self.hash_exprs(args); }, ExprKind::Cast(e, ty) | ExprKind::Type(e, ty) => { self.hash_expr(e); self.hash_ty(ty); }, ExprKind::Closure(&Closure { capture_clause, body, .. }) => { std::mem::discriminant(&capture_clause).hash(&mut self.s); // closures inherit TypeckResults self.hash_expr(self.cx.tcx.hir().body(body).value); }, ExprKind::Field(e, ref f) => { self.hash_expr(e); self.hash_name(f.name); }, ExprKind::Index(a, i) => { self.hash_expr(a); self.hash_expr(i); }, ExprKind::InlineAsm(asm) => { for piece in asm.template { match piece { InlineAsmTemplatePiece::String(s) => s.hash(&mut self.s), InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span: _, } => { operand_idx.hash(&mut self.s); modifier.hash(&mut self.s); }, } } asm.options.hash(&mut self.s); for (op, _op_sp) in asm.operands { match op { InlineAsmOperand::In { reg, expr } => { reg.hash(&mut self.s); self.hash_expr(expr); }, InlineAsmOperand::Out { reg, late, expr } => { reg.hash(&mut self.s); late.hash(&mut self.s); if let Some(expr) = expr { self.hash_expr(expr); } }, InlineAsmOperand::InOut { reg, late, expr } => { reg.hash(&mut self.s); late.hash(&mut self.s); self.hash_expr(expr); }, InlineAsmOperand::SplitInOut { reg, late, in_expr, out_expr, } => { reg.hash(&mut self.s); late.hash(&mut self.s); self.hash_expr(in_expr); if let Some(out_expr) = out_expr { self.hash_expr(out_expr); } }, InlineAsmOperand::Const { anon_const } | InlineAsmOperand::SymFn { anon_const } => { self.hash_body(anon_const.body); }, InlineAsmOperand::SymStatic { path, def_id: _ } => self.hash_qpath(path), } } }, ExprKind::Let(Let { pat, init, ty, .. }) => { self.hash_expr(init); if let Some(ty) = ty { self.hash_ty(ty); } self.hash_pat(pat); }, ExprKind::Err => {}, ExprKind::Lit(ref l) => { l.node.hash(&mut self.s); }, ExprKind::Loop(b, ref i, ..) => { self.hash_block(b); if let Some(i) = *i { self.hash_name(i.ident.name); } }, ExprKind::If(cond, then, ref else_opt) => { self.hash_expr(cond); self.hash_expr(then); if let Some(e) = *else_opt { self.hash_expr(e); } }, ExprKind::Match(e, arms, ref s) => { self.hash_expr(e); for arm in arms { self.hash_pat(arm.pat); if let Some(ref e) = arm.guard { self.hash_guard(e); } self.hash_expr(arm.body); } s.hash(&mut self.s); }, ExprKind::MethodCall(path, receiver, args, ref _fn_span) => { self.hash_name(path.ident.name); self.hash_expr(receiver); self.hash_exprs(args); }, ExprKind::ConstBlock(ref l_id) => { self.hash_body(l_id.body); }, ExprKind::Repeat(e, len) => { self.hash_expr(e); self.hash_array_length(len); }, ExprKind::Ret(ref e) => { if let Some(e) = *e { self.hash_expr(e); } }, ExprKind::Path(ref qpath) => { self.hash_qpath(qpath); }, ExprKind::Struct(path, fields, ref expr) => { self.hash_qpath(path); for f in fields { self.hash_name(f.ident.name); self.hash_expr(f.expr); } if let Some(e) = *expr { self.hash_expr(e); } }, ExprKind::Tup(tup) => { self.hash_exprs(tup); }, ExprKind::Array(v) => { self.hash_exprs(v); }, ExprKind::Unary(lop, le) => { std::mem::discriminant(&lop).hash(&mut self.s); self.hash_expr(le); }, } } pub fn hash_exprs(&mut self, e: &[Expr<'_>]) { for e in e { self.hash_expr(e); } } pub fn hash_name(&mut self, n: Symbol) { n.hash(&mut self.s); } pub fn hash_qpath(&mut self, p: &QPath<'_>) { match *p { QPath::Resolved(_, path) => { self.hash_path(path); }, QPath::TypeRelative(_, path) => { self.hash_name(path.ident.name); }, QPath::LangItem(lang_item, ..) => { std::mem::discriminant(&lang_item).hash(&mut self.s); }, } // self.maybe_typeck_results.unwrap().qpath_res(p, id).hash(&mut self.s); } pub fn hash_pat(&mut self, pat: &Pat<'_>) { std::mem::discriminant(&pat.kind).hash(&mut self.s); match pat.kind { PatKind::Binding(BindingAnnotation(by_ref, mutability), _, _, pat) => { std::mem::discriminant(&by_ref).hash(&mut self.s); std::mem::discriminant(&mutability).hash(&mut self.s); if let Some(pat) = pat { self.hash_pat(pat); } }, PatKind::Box(pat) => self.hash_pat(pat), PatKind::Lit(expr) => self.hash_expr(expr), PatKind::Or(pats) => { for pat in pats { self.hash_pat(pat); } }, PatKind::Path(ref qpath) => self.hash_qpath(qpath), PatKind::Range(s, e, i) => { if let Some(s) = s { self.hash_expr(s); } if let Some(e) = e { self.hash_expr(e); } std::mem::discriminant(&i).hash(&mut self.s); }, PatKind::Ref(pat, mu) => { self.hash_pat(pat); std::mem::discriminant(&mu).hash(&mut self.s); }, PatKind::Slice(l, m, r) => { for pat in l { self.hash_pat(pat); } if let Some(pat) = m { self.hash_pat(pat); } for pat in r { self.hash_pat(pat); } }, PatKind::Struct(ref qpath, fields, e) => { self.hash_qpath(qpath); for f in fields { self.hash_name(f.ident.name); self.hash_pat(f.pat); } e.hash(&mut self.s); }, PatKind::Tuple(pats, e) => { for pat in pats { self.hash_pat(pat); } e.hash(&mut self.s); }, PatKind::TupleStruct(ref qpath, pats, e) => { self.hash_qpath(qpath); for pat in pats { self.hash_pat(pat); } e.hash(&mut self.s); }, PatKind::Wild => {}, } } pub fn hash_path(&mut self, path: &Path<'_>) { match path.res { // constant hash since equality is dependant on inter-expression context // e.g. The expressions `if let Some(x) = foo() {}` and `if let Some(y) = foo() {}` are considered equal // even though the binding names are different and they have different `HirId`s. Res::Local(_) => 1_usize.hash(&mut self.s), _ => { for seg in path.segments { self.hash_name(seg.ident.name); self.hash_generic_args(seg.args().args); } }, } } pub fn hash_stmt(&mut self, b: &Stmt<'_>) { std::mem::discriminant(&b.kind).hash(&mut self.s); match &b.kind { StmtKind::Local(local) => { self.hash_pat(local.pat); if let Some(init) = local.init { self.hash_expr(init); } if let Some(els) = local.els { self.hash_block(els); } }, StmtKind::Item(..) => {}, StmtKind::Expr(expr) | StmtKind::Semi(expr) => { self.hash_expr(expr); }, } } pub fn hash_guard(&mut self, g: &Guard<'_>) { match g { Guard::If(expr) | Guard::IfLet(Let { init: expr, .. }) => { self.hash_expr(expr); }, } } pub fn hash_lifetime(&mut self, lifetime: &Lifetime) { lifetime.ident.name.hash(&mut self.s); std::mem::discriminant(&lifetime.res).hash(&mut self.s); if let LifetimeName::Param(param_id) = lifetime.res { param_id.hash(&mut self.s); } } pub fn hash_ty(&mut self, ty: &Ty<'_>) { std::mem::discriminant(&ty.kind).hash(&mut self.s); self.hash_tykind(&ty.kind); } pub fn hash_tykind(&mut self, ty: &TyKind<'_>) { match ty { TyKind::Slice(ty) => { self.hash_ty(ty); }, &TyKind::Array(ty, len) => { self.hash_ty(ty); self.hash_array_length(len); }, TyKind::Ptr(ref mut_ty) => { self.hash_ty(mut_ty.ty); mut_ty.mutbl.hash(&mut self.s); }, TyKind::Ref(lifetime, ref mut_ty) => { self.hash_lifetime(lifetime); self.hash_ty(mut_ty.ty); mut_ty.mutbl.hash(&mut self.s); }, TyKind::BareFn(bfn) => { bfn.unsafety.hash(&mut self.s); bfn.abi.hash(&mut self.s); for arg in bfn.decl.inputs { self.hash_ty(arg); } std::mem::discriminant(&bfn.decl.output).hash(&mut self.s); match bfn.decl.output { FnRetTy::DefaultReturn(_) => {}, FnRetTy::Return(ty) => { self.hash_ty(ty); }, } bfn.decl.c_variadic.hash(&mut self.s); }, TyKind::Tup(ty_list) => { for ty in *ty_list { self.hash_ty(ty); } }, TyKind::Path(ref qpath) => self.hash_qpath(qpath), TyKind::OpaqueDef(_, arg_list, in_trait) => { self.hash_generic_args(arg_list); in_trait.hash(&mut self.s); }, TyKind::TraitObject(_, lifetime, _) => { self.hash_lifetime(lifetime); }, TyKind::Typeof(anon_const) => { self.hash_body(anon_const.body); }, TyKind::Err | TyKind::Infer | TyKind::Never => {}, } } pub fn hash_array_length(&mut self, length: ArrayLen) { match length { ArrayLen::Infer(..) => {}, ArrayLen::Body(anon_const) => self.hash_body(anon_const.body), } } pub fn hash_body(&mut self, body_id: BodyId) { // swap out TypeckResults when hashing a body let old_maybe_typeck_results = self.maybe_typeck_results.replace(self.cx.tcx.typeck_body(body_id)); self.hash_expr(self.cx.tcx.hir().body(body_id).value); self.maybe_typeck_results = old_maybe_typeck_results; } fn hash_generic_args(&mut self, arg_list: &[GenericArg<'_>]) { for arg in arg_list { match *arg { GenericArg::Lifetime(l) => self.hash_lifetime(l), GenericArg::Type(ty) => self.hash_ty(ty), GenericArg::Const(ref ca) => self.hash_body(ca.value.body), GenericArg::Infer(ref inf) => self.hash_ty(&inf.to_ty()), } } } } pub fn hash_stmt(cx: &LateContext<'_>, s: &Stmt<'_>) -> u64 { let mut h = SpanlessHash::new(cx); h.hash_stmt(s); h.finish() } pub fn is_bool(ty: &Ty<'_>) -> bool { if let TyKind::Path(QPath::Resolved(_, path)) = ty.kind { matches!(path.res, Res::PrimTy(PrimTy::Bool)) } else { false } } pub fn hash_expr(cx: &LateContext<'_>, e: &Expr<'_>) -> u64 { let mut h = SpanlessHash::new(cx); h.hash_expr(e); h.finish() }