//! Transforms `ast::Expr` into an equivalent `hir_def::expr::Expr` //! representation. use std::{mem, sync::Arc}; use either::Either; use hir_expand::{ ast_id_map::AstIdMap, hygiene::Hygiene, name::{name, AsName, Name}, AstId, ExpandError, HirFileId, InFile, }; use intern::Interned; use la_arena::Arena; use once_cell::unsync::OnceCell; use profile::Count; use rustc_hash::FxHashMap; use syntax::{ ast::{ self, ArrayExprKind, AstChildren, HasArgList, HasLoopBody, HasName, LiteralKind, SlicePatComponents, }, AstNode, AstPtr, SyntaxNodePtr, }; use crate::{ adt::StructKind, body::{Body, BodySourceMap, Expander, ExprPtr, LabelPtr, LabelSource, PatPtr}, body::{BodyDiagnostic, ExprSource, PatSource}, builtin_type::{BuiltinFloat, BuiltinInt, BuiltinUint}, db::DefDatabase, expr::{ dummy_expr_id, Array, BindingAnnotation, ClosureKind, Expr, ExprId, FloatTypeWrapper, Label, LabelId, Literal, MatchArm, Movability, Pat, PatId, RecordFieldPat, RecordLitField, Statement, }, item_scope::BuiltinShadowMode, path::{GenericArgs, Path}, type_ref::{Mutability, Rawness, TypeRef}, AdtId, BlockLoc, ModuleDefId, UnresolvedMacro, }; pub struct LowerCtx<'a> { pub db: &'a dyn DefDatabase, hygiene: Hygiene, ast_id_map: Option<(HirFileId, OnceCell>)>, } impl<'a> LowerCtx<'a> { pub fn new(db: &'a dyn DefDatabase, file_id: HirFileId) -> Self { LowerCtx { db, hygiene: Hygiene::new(db.upcast(), file_id), ast_id_map: Some((file_id, OnceCell::new())), } } pub fn with_hygiene(db: &'a dyn DefDatabase, hygiene: &Hygiene) -> Self { LowerCtx { db, hygiene: hygiene.clone(), ast_id_map: None } } pub(crate) fn hygiene(&self) -> &Hygiene { &self.hygiene } pub(crate) fn lower_path(&self, ast: ast::Path) -> Option { Path::from_src(ast, self) } pub(crate) fn ast_id(&self, item: &N) -> Option> { let &(file_id, ref ast_id_map) = self.ast_id_map.as_ref()?; let ast_id_map = ast_id_map.get_or_init(|| self.db.ast_id_map(file_id)); Some(InFile::new(file_id, ast_id_map.ast_id(item))) } } pub(super) fn lower( db: &dyn DefDatabase, expander: Expander, params: Option<(ast::ParamList, impl Iterator)>, body: Option, ) -> (Body, BodySourceMap) { ExprCollector { db, source_map: BodySourceMap::default(), ast_id_map: db.ast_id_map(expander.current_file_id), body: Body { exprs: Arena::default(), pats: Arena::default(), labels: Arena::default(), params: Vec::new(), body_expr: dummy_expr_id(), block_scopes: Vec::new(), _c: Count::new(), or_pats: Default::default(), }, expander, name_to_pat_grouping: Default::default(), is_lowering_inside_or_pat: false, is_lowering_assignee_expr: false, is_lowering_generator: false, } .collect(params, body) } struct ExprCollector<'a> { db: &'a dyn DefDatabase, expander: Expander, ast_id_map: Arc, body: Body, source_map: BodySourceMap, // a poor-mans union-find? name_to_pat_grouping: FxHashMap>, is_lowering_inside_or_pat: bool, is_lowering_assignee_expr: bool, is_lowering_generator: bool, } impl ExprCollector<'_> { fn collect( mut self, param_list: Option<(ast::ParamList, impl Iterator)>, body: Option, ) -> (Body, BodySourceMap) { if let Some((param_list, mut attr_enabled)) = param_list { if let Some(self_param) = param_list.self_param().filter(|_| attr_enabled.next().unwrap_or(false)) { let ptr = AstPtr::new(&self_param); let param_pat = self.alloc_pat( Pat::Bind { name: name![self], mode: BindingAnnotation::new( self_param.mut_token().is_some() && self_param.amp_token().is_none(), false, ), subpat: None, }, Either::Right(ptr), ); self.body.params.push(param_pat); } for pat in param_list .params() .zip(attr_enabled) .filter_map(|(param, enabled)| param.pat().filter(|_| enabled)) { let param_pat = self.collect_pat(pat); self.body.params.push(param_pat); } }; self.body.body_expr = self.collect_expr_opt(body); (self.body, self.source_map) } fn ctx(&self) -> LowerCtx<'_> { LowerCtx::new(self.db, self.expander.current_file_id) } fn alloc_expr(&mut self, expr: Expr, ptr: ExprPtr) -> ExprId { let src = self.expander.to_source(ptr); let id = self.make_expr(expr, src.clone()); self.source_map.expr_map.insert(src, id); id } // desugared exprs don't have ptr, that's wrong and should be fixed // somehow. fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId { self.body.exprs.alloc(expr) } fn missing_expr(&mut self) -> ExprId { self.alloc_expr_desugared(Expr::Missing) } fn make_expr(&mut self, expr: Expr, src: ExprSource) -> ExprId { let id = self.body.exprs.alloc(expr); self.source_map.expr_map_back.insert(id, src); id } fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId { let src = self.expander.to_source(ptr); let id = self.make_pat(pat, src.clone()); self.source_map.pat_map.insert(src, id); id } fn missing_pat(&mut self) -> PatId { self.body.pats.alloc(Pat::Missing) } fn make_pat(&mut self, pat: Pat, src: PatSource) -> PatId { let id = self.body.pats.alloc(pat); self.source_map.pat_map_back.insert(id, src); id } fn alloc_label(&mut self, label: Label, ptr: LabelPtr) -> LabelId { let src = self.expander.to_source(ptr); let id = self.make_label(label, src.clone()); self.source_map.label_map.insert(src, id); id } fn make_label(&mut self, label: Label, src: LabelSource) -> LabelId { let id = self.body.labels.alloc(label); self.source_map.label_map_back.insert(id, src); id } fn collect_expr(&mut self, expr: ast::Expr) -> ExprId { self.maybe_collect_expr(expr).unwrap_or_else(|| self.missing_expr()) } /// Returns `None` if and only if the expression is `#[cfg]`d out. fn maybe_collect_expr(&mut self, expr: ast::Expr) -> Option { let syntax_ptr = AstPtr::new(&expr); self.check_cfg(&expr)?; Some(match expr { ast::Expr::IfExpr(e) => { let then_branch = self.collect_block_opt(e.then_branch()); let else_branch = e.else_branch().map(|b| match b { ast::ElseBranch::Block(it) => self.collect_block(it), ast::ElseBranch::IfExpr(elif) => { let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap(); self.collect_expr(expr) } }); let condition = self.collect_expr_opt(e.condition()); self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr) } ast::Expr::LetExpr(e) => { let pat = self.collect_pat_opt(e.pat()); let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Let { pat, expr }, syntax_ptr) } ast::Expr::BlockExpr(e) => match e.modifier() { Some(ast::BlockModifier::Try(_)) => { let body = self.collect_block(e); self.alloc_expr(Expr::TryBlock { body }, syntax_ptr) } Some(ast::BlockModifier::Unsafe(_)) => { let body = self.collect_block(e); self.alloc_expr(Expr::Unsafe { body }, syntax_ptr) } // FIXME: we need to record these effects somewhere... Some(ast::BlockModifier::Label(label)) => { let label = self.collect_label(label); let res = self.collect_block(e); match &mut self.body.exprs[res] { Expr::Block { label: block_label, .. } => { *block_label = Some(label); } _ => unreachable!(), } res } Some(ast::BlockModifier::Async(_)) => { let body = self.collect_block(e); self.alloc_expr(Expr::Async { body }, syntax_ptr) } Some(ast::BlockModifier::Const(_)) => { let body = self.collect_block(e); self.alloc_expr(Expr::Const { body }, syntax_ptr) } None => self.collect_block(e), }, ast::Expr::LoopExpr(e) => { let label = e.label().map(|label| self.collect_label(label)); let body = self.collect_block_opt(e.loop_body()); self.alloc_expr(Expr::Loop { body, label }, syntax_ptr) } ast::Expr::WhileExpr(e) => { let label = e.label().map(|label| self.collect_label(label)); let body = self.collect_block_opt(e.loop_body()); let condition = self.collect_expr_opt(e.condition()); self.alloc_expr(Expr::While { condition, body, label }, syntax_ptr) } ast::Expr::ForExpr(e) => { let label = e.label().map(|label| self.collect_label(label)); let iterable = self.collect_expr_opt(e.iterable()); let pat = self.collect_pat_opt(e.pat()); let body = self.collect_block_opt(e.loop_body()); self.alloc_expr(Expr::For { iterable, pat, body, label }, syntax_ptr) } ast::Expr::CallExpr(e) => { let callee = self.collect_expr_opt(e.expr()); let args = if let Some(arg_list) = e.arg_list() { arg_list.args().filter_map(|e| self.maybe_collect_expr(e)).collect() } else { Box::default() }; self.alloc_expr( Expr::Call { callee, args, is_assignee_expr: self.is_lowering_assignee_expr }, syntax_ptr, ) } ast::Expr::MethodCallExpr(e) => { let receiver = self.collect_expr_opt(e.receiver()); let args = if let Some(arg_list) = e.arg_list() { arg_list.args().filter_map(|e| self.maybe_collect_expr(e)).collect() } else { Box::default() }; let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing); let generic_args = e .generic_arg_list() .and_then(|it| GenericArgs::from_ast(&self.ctx(), it)) .map(Box::new); self.alloc_expr( Expr::MethodCall { receiver, method_name, args, generic_args }, syntax_ptr, ) } ast::Expr::MatchExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let arms = if let Some(match_arm_list) = e.match_arm_list() { match_arm_list .arms() .filter_map(|arm| { self.check_cfg(&arm).map(|()| MatchArm { pat: self.collect_pat_opt(arm.pat()), expr: self.collect_expr_opt(arm.expr()), guard: arm .guard() .map(|guard| self.collect_expr_opt(guard.condition())), }) }) .collect() } else { Box::default() }; self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr) } ast::Expr::PathExpr(e) => { let path = e .path() .and_then(|path| self.expander.parse_path(self.db, path)) .map(Expr::Path) .unwrap_or(Expr::Missing); self.alloc_expr(path, syntax_ptr) } ast::Expr::ContinueExpr(e) => self.alloc_expr( Expr::Continue { label: e.lifetime().map(|l| Name::new_lifetime(&l)) }, syntax_ptr, ), ast::Expr::BreakExpr(e) => { let expr = e.expr().map(|e| self.collect_expr(e)); self.alloc_expr( Expr::Break { expr, label: e.lifetime().map(|l| Name::new_lifetime(&l)) }, syntax_ptr, ) } ast::Expr::ParenExpr(e) => { let inner = self.collect_expr_opt(e.expr()); // make the paren expr point to the inner expression as well let src = self.expander.to_source(syntax_ptr); self.source_map.expr_map.insert(src, inner); inner } ast::Expr::ReturnExpr(e) => { let expr = e.expr().map(|e| self.collect_expr(e)); self.alloc_expr(Expr::Return { expr }, syntax_ptr) } ast::Expr::YieldExpr(e) => { self.is_lowering_generator = true; let expr = e.expr().map(|e| self.collect_expr(e)); self.alloc_expr(Expr::Yield { expr }, syntax_ptr) } ast::Expr::YeetExpr(e) => { let expr = e.expr().map(|e| self.collect_expr(e)); self.alloc_expr(Expr::Yeet { expr }, syntax_ptr) } ast::Expr::RecordExpr(e) => { let path = e.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new); let is_assignee_expr = self.is_lowering_assignee_expr; let record_lit = if let Some(nfl) = e.record_expr_field_list() { let fields = nfl .fields() .filter_map(|field| { self.check_cfg(&field)?; let name = field.field_name()?.as_name(); let expr = match field.expr() { Some(e) => self.collect_expr(e), None => self.missing_expr(), }; let src = self.expander.to_source(AstPtr::new(&field)); self.source_map.field_map.insert(src.clone(), expr); self.source_map.field_map_back.insert(expr, src); Some(RecordLitField { name, expr }) }) .collect(); let spread = nfl.spread().map(|s| self.collect_expr(s)); let ellipsis = nfl.dotdot_token().is_some(); Expr::RecordLit { path, fields, spread, ellipsis, is_assignee_expr } } else { Expr::RecordLit { path, fields: Box::default(), spread: None, ellipsis: false, is_assignee_expr, } }; self.alloc_expr(record_lit, syntax_ptr) } ast::Expr::FieldExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let name = match e.field_access() { Some(kind) => kind.as_name(), _ => Name::missing(), }; self.alloc_expr(Expr::Field { expr, name }, syntax_ptr) } ast::Expr::AwaitExpr(e) => { let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Await { expr }, syntax_ptr) } ast::Expr::TryExpr(e) => { let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Try { expr }, syntax_ptr) } ast::Expr::CastExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let type_ref = Interned::new(TypeRef::from_ast_opt(&self.ctx(), e.ty())); self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr) } ast::Expr::RefExpr(e) => { let expr = self.collect_expr_opt(e.expr()); let raw_tok = e.raw_token().is_some(); let mutability = if raw_tok { if e.mut_token().is_some() { Mutability::Mut } else if e.const_token().is_some() { Mutability::Shared } else { unreachable!("parser only remaps to raw_token() if matching mutability token follows") } } else { Mutability::from_mutable(e.mut_token().is_some()) }; let rawness = Rawness::from_raw(raw_tok); self.alloc_expr(Expr::Ref { expr, rawness, mutability }, syntax_ptr) } ast::Expr::PrefixExpr(e) => { let expr = self.collect_expr_opt(e.expr()); match e.op_kind() { Some(op) => self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr), None => self.alloc_expr(Expr::Missing, syntax_ptr), } } ast::Expr::ClosureExpr(e) => { let mut args = Vec::new(); let mut arg_types = Vec::new(); if let Some(pl) = e.param_list() { for param in pl.params() { let pat = self.collect_pat_opt(param.pat()); let type_ref = param.ty().map(|it| Interned::new(TypeRef::from_ast(&self.ctx(), it))); args.push(pat); arg_types.push(type_ref); } } let ret_type = e .ret_type() .and_then(|r| r.ty()) .map(|it| Interned::new(TypeRef::from_ast(&self.ctx(), it))); let prev_is_lowering_generator = self.is_lowering_generator; self.is_lowering_generator = false; let body = self.collect_expr_opt(e.body()); let closure_kind = if self.is_lowering_generator { let movability = if e.static_token().is_some() { Movability::Static } else { Movability::Movable }; ClosureKind::Generator(movability) } else { ClosureKind::Closure }; self.is_lowering_generator = prev_is_lowering_generator; self.alloc_expr( Expr::Closure { args: args.into(), arg_types: arg_types.into(), ret_type, body, closure_kind, }, syntax_ptr, ) } ast::Expr::BinExpr(e) => { let op = e.op_kind(); if let Some(ast::BinaryOp::Assignment { op: None }) = op { self.is_lowering_assignee_expr = true; } let lhs = self.collect_expr_opt(e.lhs()); self.is_lowering_assignee_expr = false; let rhs = self.collect_expr_opt(e.rhs()); self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr) } ast::Expr::TupleExpr(e) => { let exprs = e.fields().map(|expr| self.collect_expr(expr)).collect(); self.alloc_expr( Expr::Tuple { exprs, is_assignee_expr: self.is_lowering_assignee_expr }, syntax_ptr, ) } ast::Expr::BoxExpr(e) => { let expr = self.collect_expr_opt(e.expr()); self.alloc_expr(Expr::Box { expr }, syntax_ptr) } ast::Expr::ArrayExpr(e) => { let kind = e.kind(); match kind { ArrayExprKind::ElementList(e) => { let elements = e.map(|expr| self.collect_expr(expr)).collect(); self.alloc_expr( Expr::Array(Array::ElementList { elements, is_assignee_expr: self.is_lowering_assignee_expr, }), syntax_ptr, ) } ArrayExprKind::Repeat { initializer, repeat } => { let initializer = self.collect_expr_opt(initializer); let repeat = self.collect_expr_opt(repeat); self.alloc_expr( Expr::Array(Array::Repeat { initializer, repeat }), syntax_ptr, ) } } } ast::Expr::Literal(e) => self.alloc_expr(Expr::Literal(e.kind().into()), syntax_ptr), ast::Expr::IndexExpr(e) => { let base = self.collect_expr_opt(e.base()); let index = self.collect_expr_opt(e.index()); self.alloc_expr(Expr::Index { base, index }, syntax_ptr) } ast::Expr::RangeExpr(e) => { let lhs = e.start().map(|lhs| self.collect_expr(lhs)); let rhs = e.end().map(|rhs| self.collect_expr(rhs)); match e.op_kind() { Some(range_type) => { self.alloc_expr(Expr::Range { lhs, rhs, range_type }, syntax_ptr) } None => self.alloc_expr(Expr::Missing, syntax_ptr), } } ast::Expr::MacroExpr(e) => { let e = e.macro_call()?; let macro_ptr = AstPtr::new(&e); let id = self.collect_macro_call(e, macro_ptr, true, |this, expansion| { expansion.map(|it| this.collect_expr(it)) }); match id { Some(id) => { // Make the macro-call point to its expanded expression so we can query // semantics on syntax pointers to the macro let src = self.expander.to_source(syntax_ptr); self.source_map.expr_map.insert(src, id); id } None => self.alloc_expr(Expr::Missing, syntax_ptr), } } ast::Expr::UnderscoreExpr(_) => self.alloc_expr(Expr::Underscore, syntax_ptr), }) } fn collect_macro_call( &mut self, mcall: ast::MacroCall, syntax_ptr: AstPtr, record_diagnostics: bool, collector: F, ) -> U where F: FnOnce(&mut Self, Option) -> U, T: ast::AstNode, { // File containing the macro call. Expansion errors will be attached here. let outer_file = self.expander.current_file_id; let macro_call_ptr = self.expander.to_source(AstPtr::new(&mcall)); let res = self.expander.enter_expand(self.db, mcall); let res = match res { Ok(res) => res, Err(UnresolvedMacro { path }) => { if record_diagnostics { self.source_map.diagnostics.push(BodyDiagnostic::UnresolvedMacroCall { node: InFile::new(outer_file, syntax_ptr), path, }); } return collector(self, None); } }; if record_diagnostics { match &res.err { Some(ExpandError::UnresolvedProcMacro(krate)) => { self.source_map.diagnostics.push(BodyDiagnostic::UnresolvedProcMacro { node: InFile::new(outer_file, syntax_ptr), krate: *krate, }); } Some(ExpandError::RecursionOverflowPosioned) => { // Recursion limit has been reached in the macro expansion tree, but not in // this very macro call. Don't add diagnostics to avoid duplication. } Some(err) => { self.source_map.diagnostics.push(BodyDiagnostic::MacroError { node: InFile::new(outer_file, syntax_ptr), message: err.to_string(), }); } None => {} } } match res.value { Some((mark, expansion)) => { // Keep collecting even with expansion errors so we can provide completions and // other services in incomplete macro expressions. self.source_map.expansions.insert(macro_call_ptr, self.expander.current_file_id); let prev_ast_id_map = mem::replace( &mut self.ast_id_map, self.db.ast_id_map(self.expander.current_file_id), ); let id = collector(self, Some(expansion)); self.ast_id_map = prev_ast_id_map; self.expander.exit(self.db, mark); id } None => collector(self, None), } } fn collect_expr_opt(&mut self, expr: Option) -> ExprId { match expr { Some(expr) => self.collect_expr(expr), None => self.missing_expr(), } } fn collect_macro_as_stmt( &mut self, statements: &mut Vec, mac: ast::MacroExpr, ) -> Option { let mac_call = mac.macro_call()?; let syntax_ptr = AstPtr::new(&ast::Expr::from(mac)); let macro_ptr = AstPtr::new(&mac_call); let expansion = self.collect_macro_call( mac_call, macro_ptr, false, |this, expansion: Option| match expansion { Some(expansion) => { expansion.statements().for_each(|stmt| this.collect_stmt(statements, stmt)); expansion.expr().and_then(|expr| match expr { ast::Expr::MacroExpr(mac) => this.collect_macro_as_stmt(statements, mac), expr => Some(this.collect_expr(expr)), }) } None => None, }, ); match expansion { Some(tail) => { // Make the macro-call point to its expanded expression so we can query // semantics on syntax pointers to the macro let src = self.expander.to_source(syntax_ptr); self.source_map.expr_map.insert(src, tail); Some(tail) } None => None, } } fn collect_stmt(&mut self, statements: &mut Vec, s: ast::Stmt) { match s { ast::Stmt::LetStmt(stmt) => { if self.check_cfg(&stmt).is_none() { return; } let pat = self.collect_pat_opt(stmt.pat()); let type_ref = stmt.ty().map(|it| Interned::new(TypeRef::from_ast(&self.ctx(), it))); let initializer = stmt.initializer().map(|e| self.collect_expr(e)); let else_branch = stmt .let_else() .and_then(|let_else| let_else.block_expr()) .map(|block| self.collect_block(block)); statements.push(Statement::Let { pat, type_ref, initializer, else_branch }); } ast::Stmt::ExprStmt(stmt) => { let expr = stmt.expr(); match &expr { Some(expr) if self.check_cfg(expr).is_none() => return, _ => (), } let has_semi = stmt.semicolon_token().is_some(); // Note that macro could be expanded to multiple statements if let Some(ast::Expr::MacroExpr(mac)) = expr { if let Some(expr) = self.collect_macro_as_stmt(statements, mac) { statements.push(Statement::Expr { expr, has_semi }) } } else { let expr = self.collect_expr_opt(expr); statements.push(Statement::Expr { expr, has_semi }); } } ast::Stmt::Item(_item) => (), } } fn collect_block(&mut self, block: ast::BlockExpr) -> ExprId { let file_local_id = self.ast_id_map.ast_id(&block); let ast_id = AstId::new(self.expander.current_file_id, file_local_id); let block_loc = BlockLoc { ast_id, module: self.expander.def_map.module_id(self.expander.module) }; let block_id = self.db.intern_block(block_loc); let (module, def_map) = match self.db.block_def_map(block_id) { Some(def_map) => { self.body.block_scopes.push(block_id); (def_map.root(), def_map) } None => (self.expander.module, self.expander.def_map.clone()), }; let prev_def_map = mem::replace(&mut self.expander.def_map, def_map); let prev_local_module = mem::replace(&mut self.expander.module, module); let mut statements = Vec::new(); block.statements().for_each(|s| self.collect_stmt(&mut statements, s)); let tail = block.tail_expr().and_then(|e| match e { ast::Expr::MacroExpr(mac) => self.collect_macro_as_stmt(&mut statements, mac), expr => self.maybe_collect_expr(expr), }); let tail = tail.or_else(|| { let stmt = statements.pop()?; if let Statement::Expr { expr, has_semi: false } = stmt { return Some(expr); } statements.push(stmt); None }); let syntax_node_ptr = AstPtr::new(&block.into()); let expr_id = self.alloc_expr( Expr::Block { id: block_id, statements: statements.into_boxed_slice(), tail, label: None, }, syntax_node_ptr, ); self.expander.def_map = prev_def_map; self.expander.module = prev_local_module; expr_id } fn collect_block_opt(&mut self, expr: Option) -> ExprId { match expr { Some(block) => self.collect_block(block), None => self.missing_expr(), } } fn collect_label(&mut self, ast_label: ast::Label) -> LabelId { let label = Label { name: ast_label.lifetime().as_ref().map_or_else(Name::missing, Name::new_lifetime), }; self.alloc_label(label, AstPtr::new(&ast_label)) } fn collect_pat(&mut self, pat: ast::Pat) -> PatId { let pat_id = self.collect_pat_(pat); for (_, pats) in self.name_to_pat_grouping.drain() { let pats = Arc::<[_]>::from(pats); self.body.or_pats.extend(pats.iter().map(|&pat| (pat, pats.clone()))); } self.is_lowering_inside_or_pat = false; pat_id } fn collect_pat_opt(&mut self, pat: Option) -> PatId { match pat { Some(pat) => self.collect_pat(pat), None => self.missing_pat(), } } fn collect_pat_(&mut self, pat: ast::Pat) -> PatId { let pattern = match &pat { ast::Pat::IdentPat(bp) => { let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing); let key = self.is_lowering_inside_or_pat.then(|| name.clone()); let annotation = BindingAnnotation::new(bp.mut_token().is_some(), bp.ref_token().is_some()); let subpat = bp.pat().map(|subpat| self.collect_pat_(subpat)); let pattern = if annotation == BindingAnnotation::Unannotated && subpat.is_none() { // This could also be a single-segment path pattern. To // decide that, we need to try resolving the name. let (resolved, _) = self.expander.def_map.resolve_path( self.db, self.expander.module, &name.clone().into(), BuiltinShadowMode::Other, ); match resolved.take_values() { Some(ModuleDefId::ConstId(_)) => Pat::Path(name.into()), Some(ModuleDefId::EnumVariantId(_)) => { // this is only really valid for unit variants, but // shadowing other enum variants with a pattern is // an error anyway Pat::Path(name.into()) } Some(ModuleDefId::AdtId(AdtId::StructId(s))) if self.db.struct_data(s).variant_data.kind() != StructKind::Record => { // Funnily enough, record structs *can* be shadowed // by pattern bindings (but unit or tuple structs // can't). Pat::Path(name.into()) } // shadowing statics is an error as well, so we just ignore that case here _ => Pat::Bind { name, mode: annotation, subpat }, } } else { Pat::Bind { name, mode: annotation, subpat } }; let ptr = AstPtr::new(&pat); let pat = self.alloc_pat(pattern, Either::Left(ptr)); if let Some(key) = key { self.name_to_pat_grouping.entry(key).or_default().push(pat); } return pat; } ast::Pat::TupleStructPat(p) => { let path = p.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new); let (args, ellipsis) = self.collect_tuple_pat(p.fields()); Pat::TupleStruct { path, args, ellipsis } } ast::Pat::RefPat(p) => { let pat = self.collect_pat_opt(p.pat()); let mutability = Mutability::from_mutable(p.mut_token().is_some()); Pat::Ref { pat, mutability } } ast::Pat::PathPat(p) => { let path = p.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new); path.map(Pat::Path).unwrap_or(Pat::Missing) } ast::Pat::OrPat(p) => { self.is_lowering_inside_or_pat = true; let pats = p.pats().map(|p| self.collect_pat_(p)).collect(); Pat::Or(pats) } ast::Pat::ParenPat(p) => return self.collect_pat_opt_(p.pat()), ast::Pat::TuplePat(p) => { let (args, ellipsis) = self.collect_tuple_pat(p.fields()); Pat::Tuple { args, ellipsis } } ast::Pat::WildcardPat(_) => Pat::Wild, ast::Pat::RecordPat(p) => { let path = p.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new); let args = p .record_pat_field_list() .expect("every struct should have a field list") .fields() .filter_map(|f| { let ast_pat = f.pat()?; let pat = self.collect_pat_(ast_pat); let name = f.field_name()?.as_name(); Some(RecordFieldPat { name, pat }) }) .collect(); let ellipsis = p .record_pat_field_list() .expect("every struct should have a field list") .rest_pat() .is_some(); Pat::Record { path, args, ellipsis } } ast::Pat::SlicePat(p) => { let SlicePatComponents { prefix, slice, suffix } = p.components(); // FIXME properly handle `RestPat` Pat::Slice { prefix: prefix.into_iter().map(|p| self.collect_pat_(p)).collect(), slice: slice.map(|p| self.collect_pat_(p)), suffix: suffix.into_iter().map(|p| self.collect_pat_(p)).collect(), } } ast::Pat::LiteralPat(lit) => { if let Some(ast_lit) = lit.literal() { let expr = Expr::Literal(ast_lit.kind().into()); let expr_ptr = AstPtr::new(&ast::Expr::Literal(ast_lit)); let expr_id = self.alloc_expr(expr, expr_ptr); Pat::Lit(expr_id) } else { Pat::Missing } } ast::Pat::RestPat(_) => { // `RestPat` requires special handling and should not be mapped // to a Pat. Here we are using `Pat::Missing` as a fallback for // when `RestPat` is mapped to `Pat`, which can easily happen // when the source code being analyzed has a malformed pattern // which includes `..` in a place where it isn't valid. Pat::Missing } ast::Pat::BoxPat(boxpat) => { let inner = self.collect_pat_opt_(boxpat.pat()); Pat::Box { inner } } ast::Pat::ConstBlockPat(const_block_pat) => { if let Some(expr) = const_block_pat.block_expr() { let expr_id = self.collect_block(expr); Pat::ConstBlock(expr_id) } else { Pat::Missing } } ast::Pat::MacroPat(mac) => match mac.macro_call() { Some(call) => { let macro_ptr = AstPtr::new(&call); let src = self.expander.to_source(Either::Left(AstPtr::new(&pat))); let pat = self.collect_macro_call(call, macro_ptr, true, |this, expanded_pat| { this.collect_pat_opt_(expanded_pat) }); self.source_map.pat_map.insert(src, pat); return pat; } None => Pat::Missing, }, // FIXME: implement ast::Pat::RangePat(_) => Pat::Missing, }; let ptr = AstPtr::new(&pat); self.alloc_pat(pattern, Either::Left(ptr)) } fn collect_pat_opt_(&mut self, pat: Option) -> PatId { match pat { Some(pat) => self.collect_pat_(pat), None => self.missing_pat(), } } fn collect_tuple_pat(&mut self, args: AstChildren) -> (Box<[PatId]>, Option) { // Find the location of the `..`, if there is one. Note that we do not // consider the possibility of there being multiple `..` here. let ellipsis = args.clone().position(|p| matches!(p, ast::Pat::RestPat(_))); // We want to skip the `..` pattern here, since we account for it above. let args = args .filter(|p| !matches!(p, ast::Pat::RestPat(_))) .map(|p| self.collect_pat_(p)) .collect(); (args, ellipsis) } /// Returns `None` (and emits diagnostics) when `owner` if `#[cfg]`d out, and `Some(())` when /// not. fn check_cfg(&mut self, owner: &dyn ast::HasAttrs) -> Option<()> { match self.expander.parse_attrs(self.db, owner).cfg() { Some(cfg) => { if self.expander.cfg_options().check(&cfg) != Some(false) { return Some(()); } self.source_map.diagnostics.push(BodyDiagnostic::InactiveCode { node: InFile::new( self.expander.current_file_id, SyntaxNodePtr::new(owner.syntax()), ), cfg, opts: self.expander.cfg_options().clone(), }); None } None => Some(()), } } } impl From for Literal { fn from(ast_lit_kind: ast::LiteralKind) -> Self { match ast_lit_kind { // FIXME: these should have actual values filled in, but unsure on perf impact LiteralKind::IntNumber(lit) => { if let builtin @ Some(_) = lit.suffix().and_then(BuiltinFloat::from_suffix) { Literal::Float( FloatTypeWrapper::new(lit.float_value().unwrap_or(Default::default())), builtin, ) } else if let builtin @ Some(_) = lit.suffix().and_then(BuiltinInt::from_suffix) { Literal::Int(lit.value().unwrap_or(0) as i128, builtin) } else { let builtin = lit.suffix().and_then(BuiltinUint::from_suffix); Literal::Uint(lit.value().unwrap_or(0), builtin) } } LiteralKind::FloatNumber(lit) => { let ty = lit.suffix().and_then(BuiltinFloat::from_suffix); Literal::Float(FloatTypeWrapper::new(lit.value().unwrap_or(Default::default())), ty) } LiteralKind::ByteString(bs) => { let text = bs.value().map(Box::from).unwrap_or_else(Default::default); Literal::ByteString(text) } LiteralKind::String(s) => { let text = s.value().map(Box::from).unwrap_or_else(Default::default); Literal::String(text) } LiteralKind::Byte(b) => { Literal::Uint(b.value().unwrap_or_default() as u128, Some(BuiltinUint::U8)) } LiteralKind::Char(c) => Literal::Char(c.value().unwrap_or_default()), LiteralKind::Bool(val) => Literal::Bool(val), } } }