//! Unification and canonicalization logic. use std::{fmt, iter, mem, sync::Arc}; use chalk_ir::{ cast::Cast, fold::TypeFoldable, interner::HasInterner, zip::Zip, CanonicalVarKind, FloatTy, IntTy, TyVariableKind, UniverseIndex, }; use chalk_solve::infer::ParameterEnaVariableExt; use ena::unify::UnifyKey; use hir_expand::name; use stdx::never; use super::{InferOk, InferResult, InferenceContext, TypeError}; use crate::{ db::HirDatabase, fold_tys, static_lifetime, traits::FnTrait, AliasEq, AliasTy, BoundVar, Canonical, Const, DebruijnIndex, GenericArg, GenericArgData, Goal, Guidance, InEnvironment, InferenceVar, Interner, Lifetime, ParamKind, ProjectionTy, ProjectionTyExt, Scalar, Solution, Substitution, TraitEnvironment, Ty, TyBuilder, TyExt, TyKind, VariableKind, }; impl<'a> InferenceContext<'a> { pub(super) fn canonicalize + HasInterner>( &mut self, t: T, ) -> Canonicalized where T: HasInterner, { self.table.canonicalize(t) } } #[derive(Debug, Clone)] pub(crate) struct Canonicalized where T: HasInterner, { pub(crate) value: Canonical, free_vars: Vec, } impl> Canonicalized { pub(super) fn apply_solution( &self, ctx: &mut InferenceTable<'_>, solution: Canonical, ) { // the solution may contain new variables, which we need to convert to new inference vars let new_vars = Substitution::from_iter( Interner, solution.binders.iter(Interner).map(|k| match &k.kind { VariableKind::Ty(TyVariableKind::General) => ctx.new_type_var().cast(Interner), VariableKind::Ty(TyVariableKind::Integer) => ctx.new_integer_var().cast(Interner), VariableKind::Ty(TyVariableKind::Float) => ctx.new_float_var().cast(Interner), // Chalk can sometimes return new lifetime variables. We just use the static lifetime everywhere VariableKind::Lifetime => static_lifetime().cast(Interner), VariableKind::Const(ty) => ctx.new_const_var(ty.clone()).cast(Interner), }), ); for (i, v) in solution.value.iter(Interner).enumerate() { let var = self.free_vars[i].clone(); if let Some(ty) = v.ty(Interner) { // eagerly replace projections in the type; we may be getting types // e.g. from where clauses where this hasn't happened yet let ty = ctx.normalize_associated_types_in(new_vars.apply(ty.clone(), Interner)); ctx.unify(var.assert_ty_ref(Interner), &ty); } else { let _ = ctx.try_unify(&var, &new_vars.apply(v.clone(), Interner)); } } } } pub fn could_unify( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> bool { unify(db, env, tys).is_some() } pub(crate) fn unify( db: &dyn HirDatabase, env: Arc, tys: &Canonical<(Ty, Ty)>, ) -> Option { let mut table = InferenceTable::new(db, env); let vars = Substitution::from_iter( Interner, tys.binders.iter(Interner).map(|x| match &x.kind { chalk_ir::VariableKind::Ty(_) => { GenericArgData::Ty(table.new_type_var()).intern(Interner) } chalk_ir::VariableKind::Lifetime => { GenericArgData::Ty(table.new_type_var()).intern(Interner) } // FIXME: maybe wrong? chalk_ir::VariableKind::Const(ty) => { GenericArgData::Const(table.new_const_var(ty.clone())).intern(Interner) } }), ); let ty1_with_vars = vars.apply(tys.value.0.clone(), Interner); let ty2_with_vars = vars.apply(tys.value.1.clone(), Interner); if !table.unify(&ty1_with_vars, &ty2_with_vars) { return None; } // default any type vars that weren't unified back to their original bound vars // (kind of hacky) let find_var = |iv| { vars.iter(Interner).position(|v| match v.interned() { chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(Interner), chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(Interner), chalk_ir::GenericArgData::Const(c) => c.inference_var(Interner), } == Some(iv)) }; let fallback = |iv, kind, default, binder| match kind { chalk_ir::VariableKind::Ty(_ty_kind) => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_ty(Interner).cast(Interner)), chalk_ir::VariableKind::Lifetime => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_lifetime(Interner).cast(Interner)), chalk_ir::VariableKind::Const(ty) => find_var(iv) .map_or(default, |i| BoundVar::new(binder, i).to_const(Interner, ty).cast(Interner)), }; Some(Substitution::from_iter( Interner, vars.iter(Interner).map(|v| table.resolve_with_fallback(v.clone(), &fallback)), )) } bitflags::bitflags! { #[derive(Default)] pub(crate) struct TypeVariableFlags: u8 { const DIVERGING = 1 << 0; const INTEGER = 1 << 1; const FLOAT = 1 << 2; } } type ChalkInferenceTable = chalk_solve::infer::InferenceTable; #[derive(Clone)] pub(crate) struct InferenceTable<'a> { pub(crate) db: &'a dyn HirDatabase, pub(crate) trait_env: Arc, var_unification_table: ChalkInferenceTable, type_variable_table: Vec, pending_obligations: Vec>>, } pub(crate) struct InferenceTableSnapshot { var_table_snapshot: chalk_solve::infer::InferenceSnapshot, pending_obligations: Vec>>, type_variable_table_snapshot: Vec, } impl<'a> InferenceTable<'a> { pub(crate) fn new(db: &'a dyn HirDatabase, trait_env: Arc) -> Self { InferenceTable { db, trait_env, var_unification_table: ChalkInferenceTable::new(), type_variable_table: Vec::new(), pending_obligations: Vec::new(), } } /// Chalk doesn't know about the `diverging` flag, so when it unifies two /// type variables of which one is diverging, the chosen root might not be /// diverging and we have no way of marking it as such at that time. This /// function goes through all type variables and make sure their root is /// marked as diverging if necessary, so that resolving them gives the right /// result. pub(super) fn propagate_diverging_flag(&mut self) { for i in 0..self.type_variable_table.len() { if !self.type_variable_table[i].contains(TypeVariableFlags::DIVERGING) { continue; } let v = InferenceVar::from(i as u32); let root = self.var_unification_table.inference_var_root(v); if let Some(data) = self.type_variable_table.get_mut(root.index() as usize) { *data |= TypeVariableFlags::DIVERGING; } } } pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) { self.type_variable_table[iv.index() as usize].set(TypeVariableFlags::DIVERGING, diverging); } fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty { match kind { _ if self .type_variable_table .get(iv.index() as usize) .map_or(false, |data| data.contains(TypeVariableFlags::DIVERGING)) => { TyKind::Never } TyVariableKind::General => TyKind::Error, TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)), TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)), } .intern(Interner) } pub(crate) fn canonicalize + HasInterner>( &mut self, t: T, ) -> Canonicalized where T: HasInterner, { // try to resolve obligations before canonicalizing, since this might // result in new knowledge about variables self.resolve_obligations_as_possible(); let result = self.var_unification_table.canonicalize(Interner, t); let free_vars = result .free_vars .into_iter() .map(|free_var| free_var.to_generic_arg(Interner)) .collect(); Canonicalized { value: result.quantified, free_vars } } /// Recurses through the given type, normalizing associated types mentioned /// in it by replacing them by type variables and registering obligations to /// resolve later. This should be done once for every type we get from some /// type annotation (e.g. from a let type annotation, field type or function /// call). `make_ty` handles this already, but e.g. for field types we need /// to do it as well. pub(crate) fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty { fold_tys( ty, |ty, _| match ty.kind(Interner) { TyKind::Alias(AliasTy::Projection(proj_ty)) => { self.normalize_projection_ty(proj_ty.clone()) } _ => ty, }, DebruijnIndex::INNERMOST, ) } pub(crate) fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty { let var = self.new_type_var(); let alias_eq = AliasEq { alias: AliasTy::Projection(proj_ty), ty: var.clone() }; let obligation = alias_eq.cast(Interner); self.register_obligation(obligation); var } fn extend_type_variable_table(&mut self, to_index: usize) { let count = to_index - self.type_variable_table.len() + 1; self.type_variable_table.extend(iter::repeat(TypeVariableFlags::default()).take(count)); } fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); // Chalk might have created some type variables for its own purposes that we don't know about... self.extend_type_variable_table(var.index() as usize); assert_eq!(var.index() as usize, self.type_variable_table.len() - 1); let flags = self.type_variable_table.get_mut(var.index() as usize).unwrap(); if diverging { *flags |= TypeVariableFlags::DIVERGING; } if matches!(kind, TyVariableKind::Integer) { *flags |= TypeVariableFlags::INTEGER; } else if matches!(kind, TyVariableKind::Float) { *flags |= TypeVariableFlags::FLOAT; } var.to_ty_with_kind(Interner, kind) } pub(crate) fn new_type_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, false) } pub(crate) fn new_integer_var(&mut self) -> Ty { self.new_var(TyVariableKind::Integer, false) } pub(crate) fn new_float_var(&mut self) -> Ty { self.new_var(TyVariableKind::Float, false) } pub(crate) fn new_maybe_never_var(&mut self) -> Ty { self.new_var(TyVariableKind::General, true) } pub(crate) fn new_const_var(&mut self, ty: Ty) -> Const { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); var.to_const(Interner, ty) } pub(crate) fn new_lifetime_var(&mut self) -> Lifetime { let var = self.var_unification_table.new_variable(UniverseIndex::ROOT); var.to_lifetime(Interner) } pub(crate) fn resolve_with_fallback( &mut self, t: T, fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, ) -> T where T: HasInterner + TypeFoldable, { self.resolve_with_fallback_inner(&mut Vec::new(), t, &fallback) } pub(crate) fn fresh_subst(&mut self, binders: &[CanonicalVarKind]) -> Substitution { Substitution::from_iter( Interner, binders.iter().map(|kind| { let param_infer_var = kind.map_ref(|&ui| self.var_unification_table.new_variable(ui)); param_infer_var.to_generic_arg(Interner) }), ) } pub(crate) fn instantiate_canonical(&mut self, canonical: Canonical) -> T where T: HasInterner + TypeFoldable + std::fmt::Debug, { let subst = self.fresh_subst(canonical.binders.as_slice(Interner)); subst.apply(canonical.value, Interner) } fn resolve_with_fallback_inner( &mut self, var_stack: &mut Vec, t: T, fallback: &dyn Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, ) -> T where T: HasInterner + TypeFoldable, { t.fold_with( &mut resolve::Resolver { table: self, var_stack, fallback }, DebruijnIndex::INNERMOST, ) } pub(crate) fn resolve_completely(&mut self, t: T) -> T where T: HasInterner + TypeFoldable, { self.resolve_with_fallback(t, &|_, _, d, _| d) } /// Apply a fallback to unresolved scalar types. Integer type variables and float type /// variables are replaced with i32 and f64, respectively. /// /// This method is only intended to be called just before returning inference results (i.e. in /// `InferenceContext::resolve_all()`). /// /// FIXME: This method currently doesn't apply fallback to unconstrained general type variables /// whereas rustc replaces them with `()` or `!`. pub(super) fn fallback_if_possible(&mut self) { let int_fallback = TyKind::Scalar(Scalar::Int(IntTy::I32)).intern(Interner); let float_fallback = TyKind::Scalar(Scalar::Float(FloatTy::F64)).intern(Interner); let scalar_vars: Vec<_> = self .type_variable_table .iter() .enumerate() .filter_map(|(index, flags)| { let kind = if flags.contains(TypeVariableFlags::INTEGER) { TyVariableKind::Integer } else if flags.contains(TypeVariableFlags::FLOAT) { TyVariableKind::Float } else { return None; }; // FIXME: This is not really the nicest way to get `InferenceVar`s. Can we get them // without directly constructing them from `index`? let var = InferenceVar::from(index as u32).to_ty(Interner, kind); Some(var) }) .collect(); for var in scalar_vars { let maybe_resolved = self.resolve_ty_shallow(&var); if let TyKind::InferenceVar(_, kind) = maybe_resolved.kind(Interner) { let fallback = match kind { TyVariableKind::Integer => &int_fallback, TyVariableKind::Float => &float_fallback, TyVariableKind::General => unreachable!(), }; self.unify(&var, fallback); } } } /// Unify two relatable values (e.g. `Ty`) and register new trait goals that arise from that. pub(crate) fn unify>(&mut self, ty1: &T, ty2: &T) -> bool { let result = match self.try_unify(ty1, ty2) { Ok(r) => r, Err(_) => return false, }; self.register_infer_ok(result); true } /// Unify two relatable values (e.g. `Ty`) and return new trait goals arising from it, so the /// caller needs to deal with them. pub(crate) fn try_unify>( &mut self, t1: &T, t2: &T, ) -> InferResult<()> { match self.var_unification_table.relate( Interner, &self.db, &self.trait_env.env, chalk_ir::Variance::Invariant, t1, t2, ) { Ok(result) => Ok(InferOk { goals: result.goals, value: () }), Err(chalk_ir::NoSolution) => Err(TypeError), } } /// If `ty` is a type variable with known type, returns that type; /// otherwise, return ty. pub(crate) fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty { self.resolve_obligations_as_possible(); self.var_unification_table.normalize_ty_shallow(Interner, ty).unwrap_or_else(|| ty.clone()) } pub(crate) fn snapshot(&mut self) -> InferenceTableSnapshot { let var_table_snapshot = self.var_unification_table.snapshot(); let type_variable_table_snapshot = self.type_variable_table.clone(); let pending_obligations = self.pending_obligations.clone(); InferenceTableSnapshot { var_table_snapshot, pending_obligations, type_variable_table_snapshot, } } pub(crate) fn rollback_to(&mut self, snapshot: InferenceTableSnapshot) { self.var_unification_table.rollback_to(snapshot.var_table_snapshot); self.type_variable_table = snapshot.type_variable_table_snapshot; self.pending_obligations = snapshot.pending_obligations; } pub(crate) fn run_in_snapshot(&mut self, f: impl FnOnce(&mut InferenceTable<'_>) -> T) -> T { let snapshot = self.snapshot(); let result = f(self); self.rollback_to(snapshot); result } /// Checks an obligation without registering it. Useful mostly to check /// whether a trait *might* be implemented before deciding to 'lock in' the /// choice (during e.g. method resolution or deref). pub(crate) fn try_obligation(&mut self, goal: Goal) -> Option { let in_env = InEnvironment::new(&self.trait_env.env, goal); let canonicalized = self.canonicalize(in_env); let solution = self.db.trait_solve(self.trait_env.krate, canonicalized.value); solution } pub(crate) fn register_obligation(&mut self, goal: Goal) { let in_env = InEnvironment::new(&self.trait_env.env, goal); self.register_obligation_in_env(in_env) } fn register_obligation_in_env(&mut self, goal: InEnvironment) { let canonicalized = self.canonicalize(goal); if !self.try_resolve_obligation(&canonicalized) { self.pending_obligations.push(canonicalized); } } pub(crate) fn register_infer_ok(&mut self, infer_ok: InferOk) { infer_ok.goals.into_iter().for_each(|goal| self.register_obligation_in_env(goal)); } pub(crate) fn resolve_obligations_as_possible(&mut self) { let _span = profile::span("resolve_obligations_as_possible"); let mut changed = true; let mut obligations = Vec::new(); while changed { changed = false; mem::swap(&mut self.pending_obligations, &mut obligations); for canonicalized in obligations.drain(..) { if !self.check_changed(&canonicalized) { self.pending_obligations.push(canonicalized); continue; } changed = true; let uncanonical = chalk_ir::Substitute::apply( &canonicalized.free_vars, canonicalized.value.value, Interner, ); self.register_obligation_in_env(uncanonical); } } } pub(crate) fn fudge_inference>( &mut self, f: impl FnOnce(&mut Self) -> T, ) -> T { use chalk_ir::fold::TypeFolder; #[derive(chalk_derive::FallibleTypeFolder)] #[has_interner(Interner)] struct VarFudger<'a, 'b> { table: &'a mut InferenceTable<'b>, highest_known_var: InferenceVar, } impl<'a, 'b> TypeFolder for VarFudger<'a, 'b> { fn as_dyn(&mut self) -> &mut dyn TypeFolder { self } fn interner(&self) -> Interner { Interner } fn fold_inference_ty( &mut self, var: chalk_ir::InferenceVar, kind: TyVariableKind, _outer_binder: chalk_ir::DebruijnIndex, ) -> chalk_ir::Ty { if var < self.highest_known_var { var.to_ty(Interner, kind) } else { self.table.new_type_var() } } fn fold_inference_lifetime( &mut self, var: chalk_ir::InferenceVar, _outer_binder: chalk_ir::DebruijnIndex, ) -> chalk_ir::Lifetime { if var < self.highest_known_var { var.to_lifetime(Interner) } else { self.table.new_lifetime_var() } } fn fold_inference_const( &mut self, ty: chalk_ir::Ty, var: chalk_ir::InferenceVar, _outer_binder: chalk_ir::DebruijnIndex, ) -> chalk_ir::Const { if var < self.highest_known_var { var.to_const(Interner, ty) } else { self.table.new_const_var(ty) } } } let snapshot = self.snapshot(); let highest_known_var = self.new_type_var().inference_var(Interner).expect("inference_var"); let result = f(self); self.rollback_to(snapshot); result .fold_with(&mut VarFudger { table: self, highest_known_var }, DebruijnIndex::INNERMOST) } /// This checks whether any of the free variables in the `canonicalized` /// have changed (either been unified with another variable, or with a /// value). If this is not the case, we don't need to try to solve the goal /// again -- it'll give the same result as last time. fn check_changed(&mut self, canonicalized: &Canonicalized>) -> bool { canonicalized.free_vars.iter().any(|var| { let iv = match var.data(Interner) { chalk_ir::GenericArgData::Ty(ty) => ty.inference_var(Interner), chalk_ir::GenericArgData::Lifetime(lt) => lt.inference_var(Interner), chalk_ir::GenericArgData::Const(c) => c.inference_var(Interner), } .expect("free var is not inference var"); if self.var_unification_table.probe_var(iv).is_some() { return true; } let root = self.var_unification_table.inference_var_root(iv); iv != root }) } fn try_resolve_obligation( &mut self, canonicalized: &Canonicalized>, ) -> bool { let solution = self.db.trait_solve(self.trait_env.krate, canonicalized.value.clone()); match solution { Some(Solution::Unique(canonical_subst)) => { canonicalized.apply_solution( self, Canonical { binders: canonical_subst.binders, // FIXME: handle constraints value: canonical_subst.value.subst, }, ); true } Some(Solution::Ambig(Guidance::Definite(substs))) => { canonicalized.apply_solution(self, substs); false } Some(_) => { // FIXME use this when trying to resolve everything at the end false } None => { // FIXME obligation cannot be fulfilled => diagnostic true } } } pub(crate) fn callable_sig(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec, Ty)> { match ty.callable_sig(self.db) { Some(sig) => Some((sig.params().to_vec(), sig.ret().clone())), None => self.callable_sig_from_fn_trait(ty, num_args), } } fn callable_sig_from_fn_trait(&mut self, ty: &Ty, num_args: usize) -> Option<(Vec, Ty)> { let krate = self.trait_env.krate; let fn_once_trait = FnTrait::FnOnce.get_id(self.db, krate)?; let output_assoc_type = self.db.trait_data(fn_once_trait).associated_type_by_name(&name![Output])?; let mut arg_tys = vec![]; let arg_ty = TyBuilder::tuple(num_args) .fill(|x| { let arg = match x { ParamKind::Type => self.new_type_var(), ParamKind::Const(ty) => { never!("Tuple with const parameter"); return GenericArgData::Const(self.new_const_var(ty.clone())) .intern(Interner); } }; arg_tys.push(arg.clone()); GenericArgData::Ty(arg).intern(Interner) }) .build(); let projection = { let b = TyBuilder::subst_for_def(self.db, fn_once_trait, None); if b.remaining() != 2 { return None; } let fn_once_subst = b.push(ty.clone()).push(arg_ty).build(); TyBuilder::assoc_type_projection(self.db, output_assoc_type, Some(fn_once_subst)) .build() }; let trait_env = self.trait_env.env.clone(); let obligation = InEnvironment { goal: projection.trait_ref(self.db).cast(Interner), environment: trait_env, }; let canonical = self.canonicalize(obligation.clone()); if self.db.trait_solve(krate, canonical.value.cast(Interner)).is_some() { self.register_obligation(obligation.goal); let return_ty = self.normalize_projection_ty(projection); Some((arg_tys, return_ty)) } else { None } } } impl<'a> fmt::Debug for InferenceTable<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("InferenceTable").field("num_vars", &self.type_variable_table.len()).finish() } } mod resolve { use super::InferenceTable; use crate::{ ConcreteConst, Const, ConstData, ConstValue, DebruijnIndex, GenericArg, InferenceVar, Interner, Lifetime, Ty, TyVariableKind, VariableKind, }; use chalk_ir::{ cast::Cast, fold::{TypeFoldable, TypeFolder}, }; use hir_def::type_ref::ConstScalar; #[derive(chalk_derive::FallibleTypeFolder)] #[has_interner(Interner)] pub(super) struct Resolver< 'a, 'b, F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, > { pub(super) table: &'a mut InferenceTable<'b>, pub(super) var_stack: &'a mut Vec, pub(super) fallback: F, } impl<'a, 'b, F> TypeFolder for Resolver<'a, 'b, F> where F: Fn(InferenceVar, VariableKind, GenericArg, DebruijnIndex) -> GenericArg, { fn as_dyn(&mut self) -> &mut dyn TypeFolder { self } fn interner(&self) -> Interner { Interner } fn fold_inference_ty( &mut self, var: InferenceVar, kind: TyVariableKind, outer_binder: DebruijnIndex, ) -> Ty { let var = self.table.var_unification_table.inference_var_root(var); if self.var_stack.contains(&var) { // recursive type let default = self.table.fallback_value(var, kind).cast(Interner); return (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) .assert_ty_ref(Interner) .clone(); } let result = if let Some(known_ty) = self.table.var_unification_table.probe_var(var) { // known_ty may contain other variables that are known by now self.var_stack.push(var); let result = known_ty.fold_with(self, outer_binder); self.var_stack.pop(); result.assert_ty_ref(Interner).clone() } else { let default = self.table.fallback_value(var, kind).cast(Interner); (self.fallback)(var, VariableKind::Ty(kind), default, outer_binder) .assert_ty_ref(Interner) .clone() }; result } fn fold_inference_const( &mut self, ty: Ty, var: InferenceVar, outer_binder: DebruijnIndex, ) -> Const { let var = self.table.var_unification_table.inference_var_root(var); let default = ConstData { ty: ty.clone(), value: ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Unknown }), } .intern(Interner) .cast(Interner); if self.var_stack.contains(&var) { // recursive return (self.fallback)(var, VariableKind::Const(ty), default, outer_binder) .assert_const_ref(Interner) .clone(); } if let Some(known_ty) = self.table.var_unification_table.probe_var(var) { // known_ty may contain other variables that are known by now self.var_stack.push(var); let result = known_ty.fold_with(self, outer_binder); self.var_stack.pop(); result.assert_const_ref(Interner).clone() } else { (self.fallback)(var, VariableKind::Const(ty), default, outer_binder) .assert_const_ref(Interner) .clone() } } fn fold_inference_lifetime( &mut self, _var: InferenceVar, _outer_binder: DebruijnIndex, ) -> Lifetime { // fall back all lifetimes to 'static -- currently we don't deal // with any lifetimes, but we can sometimes get some lifetime // variables through Chalk's unification, and this at least makes // sure we don't leak them outside of inference crate::static_lifetime() } } }