use cov_mark::check; use expect_test::expect; use super::{check, check_infer, check_infer_with_mismatches, check_no_mismatches, check_types}; #[test] fn infer_await() { check_types( r#" //- minicore: future struct IntFuture; impl core::future::Future for IntFuture { type Output = u64; } fn test() { let r = IntFuture; let v = r.await; v; } //^ u64 "#, ); } #[test] fn infer_async() { check_types( r#" //- minicore: future async fn foo() -> u64 { 128 } fn test() { let r = foo(); let v = r.await; v; } //^ u64 "#, ); } #[test] fn infer_desugar_async() { check_types( r#" //- minicore: future, sized async fn foo() -> u64 { 128 } fn test() { let r = foo(); r; } //^ impl Future "#, ); } #[test] fn infer_async_block() { check_types( r#" //- minicore: future, option async fn test() { let a = async { 42 }; a; // ^ impl Future let x = a.await; x; // ^ i32 let b = async {}.await; b; // ^ () let c = async { let y = None; y // ^ Option }; let _: Option = c.await; c; // ^ impl Future> } "#, ); } #[test] fn auto_sized_async_block() { check_no_mismatches( r#" //- minicore: future, sized use core::future::Future; struct MyFut(Fut); impl Future for MyFut where Fut: Future { type Output = Fut::Output; } async fn reproduction() -> usize { let f = async {999usize}; MyFut(f).await } "#, ); check_no_mismatches( r#" //- minicore: future //#11815 #[lang = "sized"] pub trait Sized {} #[lang = "unsize"] pub trait Unsize {} #[lang = "coerce_unsized"] pub trait CoerceUnsized {} pub unsafe trait Allocator {} pub struct Global; unsafe impl Allocator for Global {} #[lang = "owned_box"] #[fundamental] pub struct Box; impl, U: ?Sized, A: Allocator> CoerceUnsized> for Box {} fn send() -> Box + Send + 'static>{ box async move {} } fn not_send() -> Box + 'static> { box async move {} } "#, ); } #[test] fn into_future_trait() { check_types( r#" //- minicore: future struct Futurable; impl core::future::IntoFuture for Futurable { type Output = u64; type IntoFuture = IntFuture; } struct IntFuture; impl core::future::Future for IntFuture { type Output = u64; } fn test() { let r = Futurable; let v = r.await; v; } //^ u64 "#, ); } #[test] fn infer_try() { check_types( r#" //- /main.rs crate:main deps:core fn test() { let r: Result = Result::Ok(1); let v = r?; v; } //^ i32 //- /core.rs crate:core pub mod ops { pub trait Try { type Ok; type Error; } } pub mod result { pub enum Result { Ok(O), Err(E) } impl crate::ops::Try for Result { type Ok = O; type Error = E; } } pub mod prelude { pub mod rust_2018 { pub use crate::{result::*, ops::*}; } } "#, ); } #[test] fn infer_try_trait_v2() { check_types( r#" //- /main.rs crate:main deps:core fn test() { let r: Result = Result::Ok(1); let v = r?; v; } //^ i32 //- /core.rs crate:core mod ops { mod try_trait { pub trait Try: FromResidual { type Output; type Residual; } pub trait FromResidual::Residual> {} } pub use self::try_trait::FromResidual; pub use self::try_trait::Try; } mod convert { pub trait From {} impl From for T {} } pub mod result { use crate::convert::From; use crate::ops::{Try, FromResidual}; pub enum Infallible {} pub enum Result { Ok(O), Err(E) } impl Try for Result { type Output = O; type Error = Result; } impl> FromResidual> for Result {} } pub mod prelude { pub mod rust_2018 { pub use crate::result::*; } } "#, ); } #[test] fn infer_for_loop() { check_types( r#" //- /main.rs crate:main deps:core,alloc #![no_std] use alloc::collections::Vec; fn test() { let v = Vec::new(); v.push("foo"); for x in v { x; } //^ &str } //- /core.rs crate:core pub mod iter { pub trait IntoIterator { type Item; type IntoIter: Iterator; } pub trait Iterator { type Item; } } pub mod prelude { pub mod rust_2018 { pub use crate::iter::*; } } //- /alloc.rs crate:alloc deps:core #![no_std] pub mod collections { pub struct Vec {} impl Vec { pub fn new() -> Self { Vec {} } pub fn push(&mut self, t: T) { } } impl IntoIterator for Vec { type Item = T; type IntoIter = IntoIter; } struct IntoIter {} impl Iterator for IntoIter { type Item = T; } } "#, ); } #[test] fn infer_ops_neg() { check_types( r#" //- /main.rs crate:main deps:std struct Bar; struct Foo; impl std::ops::Neg for Bar { type Output = Foo; } fn test() { let a = Bar; let b = -a; b; } //^ Foo //- /std.rs crate:std #[prelude_import] use ops::*; mod ops { #[lang = "neg"] pub trait Neg { type Output; } } "#, ); } #[test] fn infer_ops_not() { check_types( r#" //- /main.rs crate:main deps:std struct Bar; struct Foo; impl std::ops::Not for Bar { type Output = Foo; } fn test() { let a = Bar; let b = !a; b; } //^ Foo //- /std.rs crate:std #[prelude_import] use ops::*; mod ops { #[lang = "not"] pub trait Not { type Output; } } "#, ); } #[test] fn infer_from_bound_1() { check_types( r#" trait Trait {} struct S(T); impl Trait for S {} fn foo>(t: T) {} fn test() { let s = S(unknown); // ^^^^^^^ u32 foo(s); }"#, ); } #[test] fn infer_from_bound_2() { check_types( r#" trait Trait {} struct S(T); impl Trait for S {} fn foo>(t: T) -> U { loop {} } fn test() { let s = S(unknown); // ^^^^^^^ u32 let x: u32 = foo(s); }"#, ); } #[test] fn trait_default_method_self_bound_implements_trait() { cov_mark::check!(trait_self_implements_self); check( r#" trait Trait { fn foo(&self) -> i64; fn bar(&self) -> () { self.foo(); // ^^^^^^^^^^ type: i64 } }"#, ); } #[test] fn trait_default_method_self_bound_implements_super_trait() { check( r#" trait SuperTrait { fn foo(&self) -> i64; } trait Trait: SuperTrait { fn bar(&self) -> () { self.foo(); // ^^^^^^^^^^ type: i64 } }"#, ); } #[test] fn infer_project_associated_type() { check_types( r#" trait Iterable { type Item; } struct S; impl Iterable for S { type Item = u32; } fn test() { let x: ::Item = 1; // ^ u32 let y: ::Item = u; // ^ Iterable::Item let z: T::Item = u; // ^ Iterable::Item let a: ::Item = u; // ^ Iterable::Item }"#, ); } #[test] fn infer_return_associated_type() { check_types( r#" trait Iterable { type Item; } struct S; impl Iterable for S { type Item = u32; } fn foo1(t: T) -> T::Item { loop {} } fn foo2(t: T) -> ::Item { loop {} } fn foo3(t: T) -> ::Item { loop {} } fn test() { foo1(S); // ^^^^^^^ u32 foo2(S); // ^^^^^^^ u32 foo3(S); // ^^^^^^^ u32 }"#, ); } #[test] fn associated_type_shorthand_from_method_bound() { check_types( r#" trait Iterable { type Item; } struct S; impl S { fn foo(self) -> T::Item where T: Iterable { loop {} } } fn test() { let s: S; s.foo(); // ^^^^^^^ Iterable::Item }"#, ); } #[test] fn associated_type_shorthand_from_self_issue_12484() { check_types( r#" trait Bar { type A; } trait Foo { type A; fn test(a: Self::A, _: impl Bar) { a; //^ Foo::A } }"#, ); } #[test] fn infer_associated_type_bound() { check_types( r#" trait Iterable { type Item; } fn test>() { let y: T::Item = unknown; // ^^^^^^^ u32 }"#, ); } #[test] fn infer_const_body() { // FIXME make check_types work with other bodies check_infer( r#" const A: u32 = 1 + 1; static B: u64 = { let x = 1; x }; "#, expect![[r#" 15..16 '1': u32 15..20 '1 + 1': u32 19..20 '1': u32 38..54 '{ let ...1; x }': u64 44..45 'x': u64 48..49 '1': u64 51..52 'x': u64 "#]], ); } #[test] fn tuple_struct_fields() { check_infer( r#" struct S(i32, u64); fn test() -> u64 { let a = S(4, 6); let b = a.0; a.1 }"#, expect![[r#" 37..86 '{ ... a.1 }': u64 47..48 'a': S 51..52 'S': S(i32, u64) -> S 51..58 'S(4, 6)': S 53..54 '4': i32 56..57 '6': u64 68..69 'b': i32 72..73 'a': S 72..75 'a.0': i32 81..82 'a': S 81..84 'a.1': u64 "#]], ); } #[test] fn tuple_struct_with_fn() { check_infer( r#" struct S(fn(u32) -> u64); fn test() -> u64 { let a = S(|i| 2*i); let b = a.0(4); a.0(2) }"#, expect![[r#" 43..101 '{ ...0(2) }': u64 53..54 'a': S 57..58 'S': S(fn(u32) -> u64) -> S 57..67 'S(|i| 2*i)': S 59..66 '|i| 2*i': |u32| -> u64 60..61 'i': u32 63..64 '2': u32 63..66 '2*i': u32 65..66 'i': u32 77..78 'b': u64 81..82 'a': S 81..84 'a.0': fn(u32) -> u64 81..87 'a.0(4)': u64 85..86 '4': u32 93..94 'a': S 93..96 'a.0': fn(u32) -> u64 93..99 'a.0(2)': u64 97..98 '2': u32 "#]], ); } #[test] fn indexing_arrays() { check_infer( "fn main() { &mut [9][2]; }", expect![[r#" 10..26 '{ &mut...[2]; }': () 12..23 '&mut [9][2]': &mut {unknown} 17..20 '[9]': [i32; 1] 17..23 '[9][2]': {unknown} 18..19 '9': i32 21..22 '2': i32 "#]], ) } #[test] fn infer_ops_index() { check_types( r#" //- minicore: index struct Bar; struct Foo; impl core::ops::Index for Bar { type Output = Foo; } fn test() { let a = Bar; let b = a[1u32]; b; } //^ Foo "#, ); } #[test] fn infer_ops_index_field() { check_types( r#" //- minicore: index struct Bar; struct Foo { field: u32; } impl core::ops::Index for Bar { type Output = Foo; } fn test() { let a = Bar; let b = a[1u32].field; b; } //^ u32 "#, ); } #[test] fn infer_ops_index_field_autoderef() { check_types( r#" //- minicore: index struct Bar; struct Foo { field: u32; } impl core::ops::Index for Bar { type Output = Foo; } fn test() { let a = Bar; let b = (&a[1u32]).field; b; } //^ u32 "#, ); } #[test] fn infer_ops_index_int() { check_types( r#" //- minicore: index struct Bar; struct Foo; impl core::ops::Index for Bar { type Output = Foo; } struct Range; impl core::ops::Index for Bar { type Output = Bar; } fn test() { let a = Bar; let b = a[1]; b; //^ Foo } "#, ); } #[test] fn infer_ops_index_autoderef() { check_types( r#" //- minicore: index, slice fn test() { let a = &[1u32, 2, 3]; let b = a[1]; b; } //^ u32 "#, ); } #[test] fn deref_trait() { check_types( r#" //- minicore: deref struct Arc; impl core::ops::Deref for Arc { type Target = T; } struct S; impl S { fn foo(&self) -> u128 { 0 } } fn test(s: Arc) { (*s, s.foo()); } //^^^^^^^^^^^^^ (S, u128) "#, ); } #[test] fn deref_trait_with_inference_var() { check_types( r#" //- minicore: deref struct Arc; fn new_arc() -> Arc { Arc } impl core::ops::Deref for Arc { type Target = T; } struct S; fn foo(a: Arc) {} fn test() { let a = new_arc(); let b = *a; //^^ S foo(a); } "#, ); } #[test] fn deref_trait_infinite_recursion() { check_types( r#" //- minicore: deref struct S; impl core::ops::Deref for S { type Target = S; } fn test(s: S) { s.foo(); } //^^^^^^^ {unknown} "#, ); } #[test] fn deref_trait_with_question_mark_size() { check_types( r#" //- minicore: deref struct Arc; impl core::ops::Deref for Arc { type Target = T; } struct S; impl S { fn foo(&self) -> u128 { 0 } } fn test(s: Arc) { (*s, s.foo()); } //^^^^^^^^^^^^^ (S, u128) "#, ); } #[test] fn deref_trait_with_implicit_sized_requirement_on_inference_var() { check_types( r#" //- minicore: deref struct Foo; impl core::ops::Deref for Foo { type Target = (); } fn test() { let foo = Foo; *foo; //^^^^ () let _: Foo = foo; } "#, ) } #[test] fn obligation_from_function_clause() { check_types( r#" struct S; trait Trait {} impl Trait for S {} fn foo, U>(t: T) -> U { loop {} } fn test(s: S) { foo(s); } //^^^^^^ u32 "#, ); } #[test] fn obligation_from_method_clause() { check_types( r#" //- /main.rs struct S; trait Trait {} impl Trait for S {} struct O; impl O { fn foo, U>(&self, t: T) -> U { loop {} } } fn test() { O.foo(S); } //^^^^^^^^ isize "#, ); } #[test] fn obligation_from_self_method_clause() { check_types( r#" struct S; trait Trait {} impl Trait for S {} impl S { fn foo(&self) -> U where Self: Trait { loop {} } } fn test() { S.foo(); } //^^^^^^^ i64 "#, ); } #[test] fn obligation_from_impl_clause() { check_types( r#" struct S; trait Trait {} impl Trait<&str> for S {} struct O; impl> O { fn foo(&self) -> U { loop {} } } fn test(o: O) { o.foo(); } //^^^^^^^ &str "#, ); } #[test] fn generic_param_env_1() { check_types( r#" trait Clone {} trait Trait { fn foo(self) -> u128; } struct S; impl Clone for S {} impl Trait for T where T: Clone {} fn test(t: T) { t.foo(); } //^^^^^^^ u128 "#, ); } #[test] fn generic_param_env_1_not_met() { check_types( r#" //- /main.rs trait Clone {} trait Trait { fn foo(self) -> u128; } struct S; impl Clone for S {} impl Trait for T where T: Clone {} fn test(t: T) { t.foo(); } //^^^^^^^ {unknown} "#, ); } #[test] fn generic_param_env_2() { check_types( r#" trait Trait { fn foo(self) -> u128; } struct S; impl Trait for S {} fn test(t: T) { t.foo(); } //^^^^^^^ u128 "#, ); } #[test] fn generic_param_env_2_not_met() { check_types( r#" trait Trait { fn foo(self) -> u128; } struct S; impl Trait for S {} fn test(t: T) { t.foo(); } //^^^^^^^ {unknown} "#, ); } #[test] fn generic_param_env_deref() { check_types( r#" //- minicore: deref trait Trait {} impl core::ops::Deref for T where T: Trait { type Target = i128; } fn test(t: T) { *t; } //^^ i128 "#, ); } #[test] fn associated_type_placeholder() { // inside the generic function, the associated type gets normalized to a placeholder `ApplL::Out` [https://rust-lang.github.io/rustc-guide/traits/associated-types.html#placeholder-associated-types]. check_types( r#" pub trait ApplyL { type Out; } pub struct RefMutL; impl ApplyL for RefMutL { type Out = ::Out; } fn test() { let y: as ApplyL>::Out = no_matter; y; } //^ ApplyL::Out "#, ); } #[test] fn associated_type_placeholder_2() { check_types( r#" pub trait ApplyL { type Out; } fn foo(t: T) -> ::Out; fn test(t: T) { let y = foo(t); y; } //^ ApplyL::Out "#, ); } #[test] fn argument_impl_trait() { check_infer_with_mismatches( r#" //- minicore: sized trait Trait { fn foo(&self) -> T; fn foo2(&self) -> i64; } fn bar(x: impl Trait) {} struct S(T); impl Trait for S {} fn test(x: impl Trait, y: &impl Trait) { x; y; let z = S(1); bar(z); x.foo(); y.foo(); z.foo(); x.foo2(); y.foo2(); z.foo2(); }"#, expect![[r#" 29..33 'self': &Self 54..58 'self': &Self 77..78 'x': impl Trait 97..99 '{}': () 154..155 'x': impl Trait 174..175 'y': &impl Trait 195..323 '{ ...2(); }': () 201..202 'x': impl Trait 208..209 'y': &impl Trait 219..220 'z': S 223..224 'S': S(u16) -> S 223..227 'S(1)': S 225..226 '1': u16 233..236 'bar': fn bar(S) 233..239 'bar(z)': () 237..238 'z': S 245..246 'x': impl Trait 245..252 'x.foo()': u64 258..259 'y': &impl Trait 258..265 'y.foo()': u32 271..272 'z': S 271..278 'z.foo()': u16 284..285 'x': impl Trait 284..292 'x.foo2()': i64 298..299 'y': &impl Trait 298..306 'y.foo2()': i64 312..313 'z': S 312..320 'z.foo2()': i64 "#]], ); } #[test] fn argument_impl_trait_type_args_1() { check_infer_with_mismatches( r#" //- minicore: sized trait Trait {} trait Foo { // this function has an implicit Self param, an explicit type param, // and an implicit impl Trait param! fn bar(x: impl Trait) -> T { loop {} } } fn foo(x: impl Trait) -> T { loop {} } struct S; impl Trait for S {} struct F; impl Foo for F {} fn test() { Foo::bar(S); ::bar(S); F::bar(S); Foo::bar::(S); ::bar::(S); foo(S); foo::(S); foo::(S); // we should ignore the extraneous i32 }"#, expect![[r#" 155..156 'x': impl Trait 175..186 '{ loop {} }': T 177..184 'loop {}': ! 182..184 '{}': () 199..200 'x': impl Trait 219..230 '{ loop {} }': T 221..228 'loop {}': ! 226..228 '{}': () 300..509 '{ ... i32 }': () 306..314 'Foo::bar': fn bar<{unknown}, {unknown}>(S) -> {unknown} 306..317 'Foo::bar(S)': {unknown} 315..316 'S': S 323..338 '::bar': fn bar(S) -> {unknown} 323..341 '(S) -> {unknown} 347..356 'F::bar(S)': {unknown} 354..355 'S': S 362..377 'Foo::bar::': fn bar<{unknown}, u32>(S) -> u32 362..380 'Foo::b...32>(S)': u32 378..379 'S': S 386..408 '': fn bar(S) -> u32 386..411 '(S)': u32 409..410 'S': S 418..421 'foo': fn foo<{unknown}>(S) -> {unknown} 418..424 'foo(S)': {unknown} 422..423 'S': S 430..440 'foo::': fn foo(S) -> u32 430..443 'foo::(S)': u32 441..442 'S': S 449..464 'foo::': fn foo(S) -> u32 449..467 'foo::<...32>(S)': u32 465..466 'S': S "#]], ); } #[test] fn argument_impl_trait_type_args_2() { check_infer_with_mismatches( r#" //- minicore: sized trait Trait {} struct S; impl Trait for S {} struct F; impl F { fn foo(self, x: impl Trait) -> (T, U) { loop {} } } fn test() { F.foo(S); F::.foo(S); F::.foo::(S); F::.foo::(S); // extraneous argument should be ignored }"#, expect![[r#" 87..91 'self': F 93..94 'x': impl Trait 118..129 '{ loop {} }': (T, U) 120..127 'loop {}': ! 125..127 '{}': () 143..283 '{ ...ored }': () 149..150 'F': F<{unknown}> 149..157 'F.foo(S)': ({unknown}, {unknown}) 155..156 'S': S 163..171 'F::': F 163..178 'F::.foo(S)': (u32, {unknown}) 176..177 'S': S 184..192 'F::': F 184..206 'F::(S)': (u32, i32) 204..205 'S': S 212..220 'F::': F 212..239 'F::(S)': (u32, i32) 237..238 'S': S "#]], ); } #[test] fn argument_impl_trait_to_fn_pointer() { check_infer_with_mismatches( r#" //- minicore: sized trait Trait {} fn foo(x: impl Trait) { loop {} } struct S; impl Trait for S {} fn test() { let f: fn(S) -> () = foo; }"#, expect![[r#" 22..23 'x': impl Trait 37..48 '{ loop {} }': () 39..46 'loop {}': ! 44..46 '{}': () 90..123 '{ ...foo; }': () 100..101 'f': fn(S) 117..120 'foo': fn foo(S) "#]], ); } #[test] fn impl_trait() { check_infer( r#" //- minicore: sized trait Trait { fn foo(&self) -> T; fn foo2(&self) -> i64; } fn bar() -> impl Trait {} fn test(x: impl Trait, y: &impl Trait) { x; y; let z = bar(); x.foo(); y.foo(); z.foo(); x.foo2(); y.foo2(); z.foo2(); }"#, expect![[r#" 29..33 'self': &Self 54..58 'self': &Self 98..100 '{}': () 110..111 'x': impl Trait 130..131 'y': &impl Trait 151..268 '{ ...2(); }': () 157..158 'x': impl Trait 164..165 'y': &impl Trait 175..176 'z': impl Trait 179..182 'bar': fn bar() -> impl Trait 179..184 'bar()': impl Trait 190..191 'x': impl Trait 190..197 'x.foo()': u64 203..204 'y': &impl Trait 203..210 'y.foo()': u64 216..217 'z': impl Trait 216..223 'z.foo()': u64 229..230 'x': impl Trait 229..237 'x.foo2()': i64 243..244 'y': &impl Trait 243..251 'y.foo2()': i64 257..258 'z': impl Trait 257..265 'z.foo2()': i64 "#]], ); } #[test] fn simple_return_pos_impl_trait() { cov_mark::check!(lower_rpit); check_infer( r#" //- minicore: sized trait Trait { fn foo(&self) -> T; } fn bar() -> impl Trait { loop {} } fn test() { let a = bar(); a.foo(); }"#, expect![[r#" 29..33 'self': &Self 71..82 '{ loop {} }': ! 73..80 'loop {}': ! 78..80 '{}': () 94..129 '{ ...o(); }': () 104..105 'a': impl Trait 108..111 'bar': fn bar() -> impl Trait 108..113 'bar()': impl Trait 119..120 'a': impl Trait 119..126 'a.foo()': u64 "#]], ); } #[test] fn more_return_pos_impl_trait() { check_infer( r#" //- minicore: sized trait Iterator { type Item; fn next(&mut self) -> Self::Item; } trait Trait { fn foo(&self) -> T; } fn bar() -> (impl Iterator>, impl Trait) { loop {} } fn baz(t: T) -> (impl Iterator>, impl Trait) { loop {} } fn test() { let (a, b) = bar(); a.next().foo(); b.foo(); let (c, d) = baz(1u128); c.next().foo(); d.foo(); }"#, expect![[r#" 49..53 'self': &mut Self 101..105 'self': &Self 184..195 '{ loop {} }': ({unknown}, {unknown}) 186..193 'loop {}': ! 191..193 '{}': () 206..207 't': T 268..279 '{ loop {} }': ({unknown}, {unknown}) 270..277 'loop {}': ! 275..277 '{}': () 291..413 '{ ...o(); }': () 301..307 '(a, b)': (impl Iterator>, impl Trait) 302..303 'a': impl Iterator> 305..306 'b': impl Trait 310..313 'bar': fn bar() -> (impl Iterator>, impl Trait) 310..315 'bar()': (impl Iterator>, impl Trait) 321..322 'a': impl Iterator> 321..329 'a.next()': impl Trait 321..335 'a.next().foo()': u32 341..342 'b': impl Trait 341..348 'b.foo()': u64 358..364 '(c, d)': (impl Iterator>, impl Trait) 359..360 'c': impl Iterator> 362..363 'd': impl Trait 367..370 'baz': fn baz(u128) -> (impl Iterator>, impl Trait) 367..377 'baz(1u128)': (impl Iterator>, impl Trait) 371..376 '1u128': u128 383..384 'c': impl Iterator> 383..391 'c.next()': impl Trait 383..397 'c.next().foo()': u128 403..404 'd': impl Trait 403..410 'd.foo()': u128 "#]], ); } #[test] fn infer_from_return_pos_impl_trait() { check_infer_with_mismatches( r#" //- minicore: fn, sized trait Trait {} struct Bar(T); impl Trait for Bar {} fn foo() -> (impl FnOnce(&str, T), impl Trait) { (|input, t| {}, Bar(C)) } "#, expect![[r#" 134..165 '{ ...(C)) }': (|&str, T| -> (), Bar) 140..163 '(|inpu...ar(C))': (|&str, T| -> (), Bar) 141..154 '|input, t| {}': |&str, T| -> () 142..147 'input': &str 149..150 't': T 152..154 '{}': () 156..159 'Bar': Bar(u8) -> Bar 156..162 'Bar(C)': Bar 160..161 'C': u8 "#]], ); } #[test] fn return_pos_impl_trait_in_projection() { // Note that the unused type param `X` is significant; see #13307. check_no_mismatches( r#" //- minicore: sized trait Future { type Output; } impl Future for () { type Output = i32; } type Foo = (::Output, F); fn foo() -> Foo> { (0, ()) } "#, ) } #[test] fn dyn_trait() { check_infer( r#" //- minicore: sized trait Trait { fn foo(&self) -> T; fn foo2(&self) -> i64; } fn bar() -> dyn Trait {} fn test(x: dyn Trait, y: &dyn Trait) { x; y; let z = bar(); x.foo(); y.foo(); z.foo(); x.foo2(); y.foo2(); z.foo2(); }"#, expect![[r#" 29..33 'self': &Self 54..58 'self': &Self 97..99 '{}': dyn Trait 109..110 'x': dyn Trait 128..129 'y': &dyn Trait 148..265 '{ ...2(); }': () 154..155 'x': dyn Trait 161..162 'y': &dyn Trait 172..173 'z': dyn Trait 176..179 'bar': fn bar() -> dyn Trait 176..181 'bar()': dyn Trait 187..188 'x': dyn Trait 187..194 'x.foo()': u64 200..201 'y': &dyn Trait 200..207 'y.foo()': u64 213..214 'z': dyn Trait 213..220 'z.foo()': u64 226..227 'x': dyn Trait 226..234 'x.foo2()': i64 240..241 'y': &dyn Trait 240..248 'y.foo2()': i64 254..255 'z': dyn Trait 254..262 'z.foo2()': i64 "#]], ); } #[test] fn dyn_trait_in_impl() { check_infer( r#" //- minicore: sized trait Trait { fn foo(&self) -> (T, U); } struct S {} impl S { fn bar(&self) -> &dyn Trait { loop {} } } trait Trait2 { fn baz(&self) -> (T, U); } impl Trait2 for dyn Trait { } fn test(s: S) { s.bar().baz(); }"#, expect![[r#" 32..36 'self': &Self 102..106 'self': &S 128..139 '{ loop {} }': &dyn Trait 130..137 'loop {}': ! 135..137 '{}': () 175..179 'self': &Self 251..252 's': S 267..289 '{ ...z(); }': () 273..274 's': S 273..280 's.bar()': &dyn Trait 273..286 's.bar().baz()': (u32, i32) "#]], ); } #[test] fn dyn_trait_bare() { check_infer( r#" //- minicore: sized trait Trait { fn foo(&self) -> u64; } fn bar() -> Trait {} fn test(x: Trait, y: &Trait) -> u64 { x; y; let z = bar(); x.foo(); y.foo(); z.foo(); }"#, expect![[r#" 26..30 'self': &Self 60..62 '{}': dyn Trait 72..73 'x': dyn Trait 82..83 'y': &dyn Trait 100..175 '{ ...o(); }': u64 106..107 'x': dyn Trait 113..114 'y': &dyn Trait 124..125 'z': dyn Trait 128..131 'bar': fn bar() -> dyn Trait 128..133 'bar()': dyn Trait 139..140 'x': dyn Trait 139..146 'x.foo()': u64 152..153 'y': &dyn Trait 152..159 'y.foo()': u64 165..166 'z': dyn Trait 165..172 'z.foo()': u64 "#]], ); check_infer_with_mismatches( r#" //- minicore: fn, coerce_unsized struct S; impl S { fn foo(&self) {} } fn f(_: &Fn(S)) {} fn main() { f(&|number| number.foo()); } "#, expect![[r#" 31..35 'self': &S 37..39 '{}': () 47..48 '_': &dyn Fn(S) 58..60 '{}': () 71..105 '{ ...()); }': () 77..78 'f': fn f(&dyn Fn(S)) 77..102 'f(&|nu...foo())': () 79..101 '&|numb....foo()': &|S| -> () 80..101 '|numbe....foo()': |S| -> () 81..87 'number': S 89..95 'number': S 89..101 'number.foo()': () "#]], ) } #[test] fn weird_bounds() { check_infer( r#" //- minicore: sized trait Trait {} fn test( a: impl Trait + 'lifetime, b: impl 'lifetime, c: impl (Trait), d: impl ('lifetime), e: impl ?Sized, f: impl Trait + ?Sized ) {} "#, expect![[r#" 28..29 'a': impl Trait 59..60 'b': impl Sized 82..83 'c': impl Trait 103..104 'd': impl Sized 128..129 'e': impl ?Sized 148..149 'f': impl Trait + ?Sized 173..175 '{}': () "#]], ); } #[test] fn error_bound_chalk() { check_types( r#" trait Trait { fn foo(&self) -> u32 { 0 } } fn test(x: (impl Trait + UnknownTrait)) { x.foo(); } //^^^^^^^ u32 "#, ); } #[test] fn assoc_type_bindings() { check_infer( r#" //- minicore: sized trait Trait { type Type; } fn get(t: T) -> ::Type {} fn get2>(t: T) -> U {} fn set>(t: T) -> T {t} struct S; impl Trait for S { type Type = T; } fn test>(x: T, y: impl Trait) { get(x); get2(x); get(y); get2(y); get(set(S)); get2(set(S)); get2(S::); }"#, expect![[r#" 49..50 't': T 77..79 '{}': Trait::Type 111..112 't': T 122..124 '{}': U 154..155 't': T 165..168 '{t}': T 166..167 't': T 256..257 'x': T 262..263 'y': impl Trait 289..397 '{ ...r>); }': () 295..298 'get': fn get(T) -> ::Type 295..301 'get(x)': u32 299..300 'x': T 307..311 'get2': fn get2(T) -> u32 307..314 'get2(x)': u32 312..313 'x': T 320..323 'get': fn get>(impl Trait) -> as Trait>::Type 320..326 'get(y)': i64 324..325 'y': impl Trait 332..336 'get2': fn get2>(impl Trait) -> i64 332..339 'get2(y)': i64 337..338 'y': impl Trait 345..348 'get': fn get>(S) -> as Trait>::Type 345..356 'get(set(S))': u64 349..352 'set': fn set>(S) -> S 349..355 'set(S)': S 353..354 'S': S 362..366 'get2': fn get2>(S) -> u64 362..374 'get2(set(S))': u64 367..370 'set': fn set>(S) -> S 367..373 'set(S)': S 371..372 'S': S 380..384 'get2': fn get2>(S) -> str 380..394 'get2(S::)': str 385..393 'S::': S "#]], ); } #[test] fn impl_trait_assoc_binding_projection_bug() { check_types( r#" //- minicore: iterator pub trait Language { type Kind; } pub enum RustLanguage {} impl Language for RustLanguage { type Kind = SyntaxKind; } struct SyntaxNode {} fn foo() -> impl Iterator> {} trait Clone { fn clone(&self) -> Self; } fn api_walkthrough() { for node in foo() { node.clone(); } //^^^^^^^^^^^^ {unknown} } "#, ); } #[test] fn projection_eq_within_chalk() { check_infer( r#" trait Trait1 { type Type; } trait Trait2 { fn foo(self) -> T; } impl Trait2 for U where U: Trait1 {} fn test>(x: T) { x.foo(); }"#, expect![[r#" 61..65 'self': Self 163..164 'x': T 169..185 '{ ...o(); }': () 175..176 'x': T 175..182 'x.foo()': u32 "#]], ); } #[test] fn where_clause_trait_in_scope_for_method_resolution() { check_types( r#" mod foo { pub trait Trait { fn foo(&self) -> u32 { 0 } } } fn test(x: T) { x.foo(); } //^^^^^^^ u32 "#, ); } #[test] fn super_trait_method_resolution() { check_infer( r#" mod foo { pub trait SuperTrait { fn foo(&self) -> u32 {} } } trait Trait1: foo::SuperTrait {} trait Trait2 where Self: foo::SuperTrait {} fn test(x: T, y: U) { x.foo(); y.foo(); }"#, expect![[r#" 53..57 'self': &Self 66..68 '{}': u32 185..186 'x': T 191..192 'y': U 197..226 '{ ...o(); }': () 203..204 'x': T 203..210 'x.foo()': u32 216..217 'y': U 216..223 'y.foo()': u32 "#]], ); } #[test] fn super_trait_impl_trait_method_resolution() { check_infer( r#" //- minicore: sized mod foo { pub trait SuperTrait { fn foo(&self) -> u32 {} } } trait Trait1: foo::SuperTrait {} fn test(x: &impl Trait1) { x.foo(); }"#, expect![[r#" 53..57 'self': &Self 66..68 '{}': u32 119..120 'x': &impl Trait1 136..152 '{ ...o(); }': () 142..143 'x': &impl Trait1 142..149 'x.foo()': u32 "#]], ); } #[test] fn super_trait_cycle() { // This just needs to not crash check_infer( r#" trait A: B {} trait B: A {} fn test(x: T) { x.foo(); } "#, expect![[r#" 43..44 'x': T 49..65 '{ ...o(); }': () 55..56 'x': T 55..62 'x.foo()': {unknown} "#]], ); } #[test] fn super_trait_assoc_type_bounds() { check_infer( r#" trait SuperTrait { type Type; } trait Trait where Self: SuperTrait {} fn get2>(t: T) -> U {} fn set>(t: T) -> T {t} struct S; impl SuperTrait for S { type Type = T; } impl Trait for S {} fn test() { get2(set(S)); }"#, expect![[r#" 102..103 't': T 113..115 '{}': U 145..146 't': T 156..159 '{t}': T 157..158 't': T 258..279 '{ ...S)); }': () 264..268 'get2': fn get2>(S) -> u64 264..276 'get2(set(S))': u64 269..272 'set': fn set>(S) -> S 269..275 'set(S)': S 273..274 'S': S "#]], ); } #[test] fn fn_trait() { check_infer_with_mismatches( r#" trait FnOnce { type Output; fn call_once(self, args: Args) -> >::Output; } fn test u128>(f: F) { f.call_once((1, 2)); }"#, expect![[r#" 56..60 'self': Self 62..66 'args': Args 149..150 'f': F 155..183 '{ ...2)); }': () 161..162 'f': F 161..180 'f.call...1, 2))': u128 173..179 '(1, 2)': (u32, u64) 174..175 '1': u32 177..178 '2': u64 "#]], ); } #[test] fn fn_ptr_and_item() { check_infer_with_mismatches( r#" #[lang="fn_once"] trait FnOnce { type Output; fn call_once(self, args: Args) -> Self::Output; } trait Foo { fn foo(&self) -> T; } struct Bar(T); impl R> Foo<(A1, R)> for Bar { fn foo(&self) -> (A1, R) { loop {} } } enum Opt { None, Some(T) } impl Opt { fn map U>(self, f: F) -> Opt { loop {} } } fn test() { let bar: Bar u32>; bar.foo(); let opt: Opt; let f: fn(u8) -> u32; opt.map(f); }"#, expect![[r#" 74..78 'self': Self 80..84 'args': Args 139..143 'self': &Self 243..247 'self': &Bar 260..271 '{ loop {} }': (A1, R) 262..269 'loop {}': ! 267..269 '{}': () 355..359 'self': Opt 361..362 'f': F 377..388 '{ loop {} }': Opt 379..386 'loop {}': ! 384..386 '{}': () 402..518 '{ ...(f); }': () 412..415 'bar': Bar u32> 441..444 'bar': Bar u32> 441..450 'bar.foo()': (u8, u32) 461..464 'opt': Opt 483..484 'f': fn(u8) -> u32 505..508 'opt': Opt 505..515 'opt.map(f)': Opt 513..514 'f': fn(u8) -> u32 "#]], ); } #[test] fn fn_trait_deref_with_ty_default() { check_infer( r#" //- minicore: deref, fn struct Foo; impl Foo { fn foo(&self) -> usize {} } struct Lazy T>(F); impl Lazy { pub fn new(f: F) -> Lazy {} } impl T> core::ops::Deref for Lazy { type Target = T; } fn test() { let lazy1: Lazy = Lazy::new(|| Foo); let r1 = lazy1.foo(); fn make_foo_fn() -> Foo {} let make_foo_fn_ptr: fn() -> Foo = make_foo_fn; let lazy2: Lazy = Lazy::new(make_foo_fn_ptr); let r2 = lazy2.foo(); }"#, expect![[r#" 36..40 'self': &Foo 51..53 '{}': usize 131..132 'f': F 151..153 '{}': Lazy 251..497 '{ ...o(); }': () 261..266 'lazy1': Lazy Foo> 283..292 'Lazy::new': fn new Foo>(|| -> Foo) -> Lazy Foo> 283..300 'Lazy::...| Foo)': Lazy Foo> 293..299 '|| Foo': || -> Foo 296..299 'Foo': Foo 310..312 'r1': usize 315..320 'lazy1': Lazy Foo> 315..326 'lazy1.foo()': usize 368..383 'make_foo_fn_ptr': fn() -> Foo 399..410 'make_foo_fn': fn make_foo_fn() -> Foo 420..425 'lazy2': Lazy Foo> 442..451 'Lazy::new': fn new Foo>(fn() -> Foo) -> Lazy Foo> 442..468 'Lazy::...n_ptr)': Lazy Foo> 452..467 'make_foo_fn_ptr': fn() -> Foo 478..480 'r2': usize 483..488 'lazy2': Lazy Foo> 483..494 'lazy2.foo()': usize 357..359 '{}': Foo "#]], ); } #[test] fn closure_1() { check_infer_with_mismatches( r#" //- minicore: fn enum Option { Some(T), None } impl Option { fn map U>(self, f: F) -> Option { loop {} } } fn test() { let x = Option::Some(1u32); x.map(|v| v + 1); x.map(|_v| 1u64); let y: Option = x.map(|_v| 1); }"#, expect![[r#" 86..90 'self': Option 92..93 'f': F 111..122 '{ loop {} }': Option 113..120 'loop {}': ! 118..120 '{}': () 136..255 '{ ... 1); }': () 146..147 'x': Option 150..162 'Option::Some': Some(u32) -> Option 150..168 'Option...(1u32)': Option 163..167 '1u32': u32 174..175 'x': Option 174..190 'x.map(...v + 1)': Option 180..189 '|v| v + 1': |u32| -> u32 181..182 'v': u32 184..185 'v': u32 184..189 'v + 1': u32 188..189 '1': u32 196..197 'x': Option 196..212 'x.map(... 1u64)': Option 202..211 '|_v| 1u64': |u32| -> u64 203..205 '_v': u32 207..211 '1u64': u64 222..223 'y': Option 239..240 'x': Option 239..252 'x.map(|_v| 1)': Option 245..251 '|_v| 1': |u32| -> i64 246..248 '_v': u32 250..251 '1': i64 "#]], ); } #[test] fn closure_2() { check_types( r#" //- minicore: add, fn impl core::ops::Add for u64 { type Output = Self; fn add(self, rhs: u64) -> Self::Output {0} } impl core::ops::Add for u128 { type Output = Self; fn add(self, rhs: u128) -> Self::Output {0} } fn test u64>(f: F) { f(1); // ^ u32 //^^^^ u64 let g = |v| v + 1; //^^^^^ u64 //^^^^^^^^^ |u64| -> u64 g(1u64); //^^^^^^^ u64 let h = |v| 1u128 + v; //^^^^^^^^^^^^^ |u128| -> u128 }"#, ); } #[test] fn closure_as_argument_inference_order() { check_infer_with_mismatches( r#" //- minicore: fn fn foo1 U>(x: T, f: F) -> U { loop {} } fn foo2 U>(f: F, x: T) -> U { loop {} } struct S; impl S { fn method(self) -> u64; fn foo1 U>(self, x: T, f: F) -> U { loop {} } fn foo2 U>(self, f: F, x: T) -> U { loop {} } } fn test() { let x1 = foo1(S, |s| s.method()); let x2 = foo2(|s| s.method(), S); let x3 = S.foo1(S, |s| s.method()); let x4 = S.foo2(|s| s.method(), S); }"#, expect![[r#" 33..34 'x': T 39..40 'f': F 50..61 '{ loop {} }': U 52..59 'loop {}': ! 57..59 '{}': () 95..96 'f': F 101..102 'x': T 112..123 '{ loop {} }': U 114..121 'loop {}': ! 119..121 '{}': () 158..162 'self': S 210..214 'self': S 216..217 'x': T 222..223 'f': F 233..244 '{ loop {} }': U 235..242 'loop {}': ! 240..242 '{}': () 282..286 'self': S 288..289 'f': F 294..295 'x': T 305..316 '{ loop {} }': U 307..314 'loop {}': ! 312..314 '{}': () 330..489 '{ ... S); }': () 340..342 'x1': u64 345..349 'foo1': fn foo1 u64>(S, |S| -> u64) -> u64 345..368 'foo1(S...hod())': u64 350..351 'S': S 353..367 '|s| s.method()': |S| -> u64 354..355 's': S 357..358 's': S 357..367 's.method()': u64 378..380 'x2': u64 383..387 'foo2': fn foo2 u64>(|S| -> u64, S) -> u64 383..406 'foo2(|...(), S)': u64 388..402 '|s| s.method()': |S| -> u64 389..390 's': S 392..393 's': S 392..402 's.method()': u64 404..405 'S': S 416..418 'x3': u64 421..422 'S': S 421..446 'S.foo1...hod())': u64 428..429 'S': S 431..445 '|s| s.method()': |S| -> u64 432..433 's': S 435..436 's': S 435..445 's.method()': u64 456..458 'x4': u64 461..462 'S': S 461..486 'S.foo2...(), S)': u64 468..482 '|s| s.method()': |S| -> u64 469..470 's': S 472..473 's': S 472..482 's.method()': u64 484..485 'S': S "#]], ); } #[test] fn fn_item_fn_trait() { check_types( r#" //- minicore: fn struct S; fn foo() -> S { S } fn takes_closure U>(f: F) -> U { f() } fn test() { takes_closure(foo); } //^^^^^^^^^^^^^^^^^^ S "#, ); } #[test] fn unselected_projection_in_trait_env_1() { check_types( r#" //- /main.rs trait Trait { type Item; } trait Trait2 { fn foo(&self) -> u32; } fn test() where T::Item: Trait2 { let x: T::Item = no_matter; x.foo(); } //^^^^^^^ u32 "#, ); } #[test] fn unselected_projection_in_trait_env_2() { check_types( r#" trait Trait { type Item; } trait Trait2 { fn foo(&self) -> u32; } fn test() where T::Item: Trait2, T: Trait, U: Trait<()> { let x: T::Item = no_matter; x.foo(); } //^^^^^^^ u32 "#, ); } #[test] fn unselected_projection_on_impl_self() { check_infer( r#" //- /main.rs trait Trait { type Item; fn f(&self, x: Self::Item); } struct S; impl Trait for S { type Item = u32; fn f(&self, x: Self::Item) { let y = x; } } struct S2; impl Trait for S2 { type Item = i32; fn f(&self, x: ::Item) { let y = x; } }"#, expect![[r#" 40..44 'self': &Self 46..47 'x': Trait::Item 126..130 'self': &S 132..133 'x': u32 147..161 '{ let y = x; }': () 153..154 'y': u32 157..158 'x': u32 228..232 'self': &S2 234..235 'x': i32 251..265 '{ let y = x; }': () 257..258 'y': i32 261..262 'x': i32 "#]], ); } #[test] fn unselected_projection_on_trait_self() { check_types( r#" trait Trait { type Item; fn f(&self) -> Self::Item { loop {} } } struct S; impl Trait for S { type Item = u32; } fn test() { S.f(); } //^^^^^ u32 "#, ); } #[test] fn unselected_projection_chalk_fold() { check_types( r#" trait Interner {} trait Fold { type Result; } struct Ty {} impl Fold for Ty { type Result = Ty; } fn fold(interner: &I, t: T) -> T::Result where T: Fold, { loop {} } fn foo(interner: &I, t: Ty) { fold(interner, t); } //^^^^^^^^^^^^^^^^^ Ty "#, ); } #[test] fn trait_impl_self_ty() { check_types( r#" trait Trait { fn foo(&self); } struct S; impl Trait for S {} fn test() { S.foo(); } //^^^^^^^ () "#, ); } #[test] fn trait_impl_self_ty_cycle() { check_types( r#" trait Trait { fn foo(&self); } struct S; impl Trait for S {} fn test() { S.foo(); } //^^^^^^^ {unknown} "#, ); } #[test] fn unselected_projection_in_trait_env_cycle_1() { // This is not a cycle, because the `T: Trait2` bound depends only on the `T: Trait` // bound, not on itself (since only `Trait` can define `Item`). check_types( r#" trait Trait { type Item; } trait Trait2 {} fn test() where T: Trait2 { let x: T::Item = no_matter; } //^^^^^^^^^ Trait::Item "#, ); } #[test] fn unselected_projection_in_trait_env_cycle_2() { // this is a legitimate cycle check_types( r#" //- /main.rs trait Trait { type Item; } fn test() where T: Trait, U: Trait { let x: T::Item = no_matter; } //^^^^^^^^^ {unknown} "#, ); } #[test] fn unselected_projection_in_trait_env_cycle_3() { // this is a cycle for rustc; we currently accept it check_types( r#" //- /main.rs trait Trait { type Item; type OtherItem; } fn test() where T: Trait { let x: T::Item = no_matter; } //^^^^^^^^^ Trait::Item "#, ); } #[test] fn unselected_projection_in_trait_env_no_cycle() { // this is not a cycle check_types( r#" //- /main.rs trait Index { type Output; } type Key = ::Key; pub trait UnificationStoreBase: Index> { type Key; fn len(&self) -> usize; } pub trait UnificationStoreMut: UnificationStoreBase { fn push(&mut self, value: Self::Key); } fn test(t: T) where T: UnificationStoreMut { let x; t.push(x); let y: Key; (x, y); } //^^^^^^ (UnificationStoreBase::Key, UnificationStoreBase::Key) "#, ); } #[test] fn inline_assoc_type_bounds_1() { check_types( r#" trait Iterator { type Item; } trait OtherTrait { fn foo(&self) -> T; } // workaround for Chalk assoc type normalization problems pub struct S; impl Iterator for S { type Item = ::Item; } fn test>>() { let x: as Iterator>::Item; x.foo(); } //^^^^^^^ u32 "#, ); } #[test] fn inline_assoc_type_bounds_2() { check_types( r#" trait Iterator { type Item; } fn test>>() { let x: <::Item as Iterator>::Item; x; } //^ u32 "#, ); } #[test] fn proc_macro_server_types() { check_infer( r#" macro_rules! with_api { ($S:ident, $self:ident, $m:ident) => { $m! { TokenStream { fn new() -> $S::TokenStream; }, Group { }, } }; } macro_rules! associated_item { (type TokenStream) => (type TokenStream: 'static;); (type Group) => (type Group: 'static;); ($($item:tt)*) => ($($item)*;) } macro_rules! declare_server_traits { ($($name:ident { $(fn $method:ident($($arg:ident: $arg_ty:ty),* $(,)?) $(-> $ret_ty:ty)?;)* }),* $(,)?) => { pub trait Types { $(associated_item!(type $name);)* } $(pub trait $name: Types { $(associated_item!(fn $method($($arg: $arg_ty),*) $(-> $ret_ty)?);)* })* pub trait Server: Types $(+ $name)* {} impl Server for S {} } } with_api!(Self, self_, declare_server_traits); struct G {} struct T {} struct RustAnalyzer; impl Types for RustAnalyzer { type TokenStream = T; type Group = G; } fn make() -> T { loop {} } impl TokenStream for RustAnalyzer { fn new() -> Self::TokenStream { let group: Self::Group = make(); make() } }"#, expect![[r#" 1075..1086 '{ loop {} }': T 1077..1084 'loop {}': ! 1082..1084 '{}': () 1157..1220 '{ ... }': T 1171..1176 'group': G 1192..1196 'make': fn make() -> G 1192..1198 'make()': G 1208..1212 'make': fn make() -> T 1208..1214 'make()': T "#]], ); } #[test] fn unify_impl_trait() { check_infer_with_mismatches( r#" //- minicore: sized trait Trait {} fn foo(x: impl Trait) { loop {} } fn bar(x: impl Trait) -> T { loop {} } struct S(T); impl Trait for S {} fn default() -> T { loop {} } fn test() -> impl Trait { let s1 = S(default()); foo(s1); let x: i32 = bar(S(default())); S(default()) }"#, expect![[r#" 26..27 'x': impl Trait 46..57 '{ loop {} }': () 48..55 'loop {}': ! 53..55 '{}': () 68..69 'x': impl Trait 91..102 '{ loop {} }': T 93..100 'loop {}': ! 98..100 '{}': () 171..182 '{ loop {} }': T 173..180 'loop {}': ! 178..180 '{}': () 213..309 '{ ...t()) }': S 223..225 's1': S 228..229 'S': S(u32) -> S 228..240 'S(default())': S 230..237 'default': fn default() -> u32 230..239 'default()': u32 246..249 'foo': fn foo(S) 246..253 'foo(s1)': () 250..252 's1': S 263..264 'x': i32 272..275 'bar': fn bar(S) -> i32 272..289 'bar(S(...lt()))': i32 276..277 'S': S(i32) -> S 276..288 'S(default())': S 278..285 'default': fn default() -> i32 278..287 'default()': i32 295..296 'S': S(i32) -> S 295..307 'S(default())': S 297..304 'default': fn default() -> i32 297..306 'default()': i32 "#]], ); } #[test] fn assoc_types_from_bounds() { check_infer( r#" //- minicore: fn trait T { type O; } impl T for () { type O = (); } fn f(_v: F) where X: T, F: FnOnce(&X::O), { } fn main() { f::<(), _>(|z| { z; }); }"#, expect![[r#" 72..74 '_v': F 117..120 '{ }': () 132..163 '{ ... }); }': () 138..148 'f::<(), _>': fn f<(), |&()| -> ()>(|&()| -> ()) 138..160 'f::<()... z; })': () 149..159 '|z| { z; }': |&()| -> () 150..151 'z': &() 153..159 '{ z; }': () 155..156 'z': &() "#]], ); } #[test] fn associated_type_bound() { check_types( r#" pub trait Trait { type Item: OtherTrait; } pub trait OtherTrait { fn foo(&self) -> T; } // this is just a workaround for chalk#234 pub struct S; impl Trait for S { type Item = ::Item; } fn test() { let y: as Trait>::Item = no_matter; y.foo(); } //^^^^^^^ u32 "#, ); } #[test] fn dyn_trait_through_chalk() { check_types( r#" //- minicore: deref struct Box {} impl core::ops::Deref for Box { type Target = T; } trait Trait { fn foo(&self); } fn test(x: Box) { x.foo(); } //^^^^^^^ () "#, ); } #[test] fn string_to_owned() { check_types( r#" struct String {} pub trait ToOwned { type Owned; fn to_owned(&self) -> Self::Owned; } impl ToOwned for str { type Owned = String; } fn test() { "foo".to_owned(); } //^^^^^^^^^^^^^^^^ String "#, ); } #[test] fn iterator_chain() { check_infer_with_mismatches( r#" //- minicore: fn, option pub trait Iterator { type Item; fn filter_map(self, f: F) -> FilterMap where F: FnMut(Self::Item) -> Option, { loop {} } fn for_each(self, f: F) where F: FnMut(Self::Item), { loop {} } } pub trait IntoIterator { type Item; type IntoIter: Iterator; fn into_iter(self) -> Self::IntoIter; } pub struct FilterMap { } impl Iterator for FilterMap where F: FnMut(I::Item) -> Option, { type Item = B; } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for I { type Item = I::Item; type IntoIter = I; fn into_iter(self) -> I { self } } struct Vec {} impl Vec { fn new() -> Self { loop {} } } impl IntoIterator for Vec { type Item = T; type IntoIter = IntoIter; } pub struct IntoIter { } impl Iterator for IntoIter { type Item = T; } fn main() { Vec::::new().into_iter() .filter_map(|x| if x > 0 { Some(x as u32) } else { None }) .for_each(|y| { y; }); }"#, expect![[r#" 61..65 'self': Self 67..68 'f': F 152..163 '{ loop {} }': FilterMap 154..161 'loop {}': ! 159..161 '{}': () 184..188 'self': Self 190..191 'f': F 240..251 '{ loop {} }': () 242..249 'loop {}': ! 247..249 '{}': () 360..364 'self': Self 689..693 'self': I 700..720 '{ ... }': I 710..714 'self': I 779..790 '{ loop {} }': Vec 781..788 'loop {}': ! 786..788 '{}': () 977..1104 '{ ... }); }': () 983..998 'Vec::::new': fn new() -> Vec 983..1000 'Vec::<...:new()': Vec 983..1012 'Vec::<...iter()': IntoIter 983..1075 'Vec::<...one })': FilterMap, |i32| -> Option> 983..1101 'Vec::<... y; })': () 1029..1074 '|x| if...None }': |i32| -> Option 1030..1031 'x': i32 1033..1074 'if x >...None }': Option 1036..1037 'x': i32 1036..1041 'x > 0': bool 1040..1041 '0': i32 1042..1060 '{ Some...u32) }': Option 1044..1048 'Some': Some(u32) -> Option 1044..1058 'Some(x as u32)': Option 1049..1050 'x': i32 1049..1057 'x as u32': u32 1066..1074 '{ None }': Option 1068..1072 'None': Option 1090..1100 '|y| { y; }': |u32| -> () 1091..1092 'y': u32 1094..1100 '{ y; }': () 1096..1097 'y': u32 "#]], ); } #[test] fn nested_assoc() { check_types( r#" struct Bar; struct Foo; trait A { type OutputA; } impl A for Bar { type OutputA = Foo; } trait B { type Output; fn foo() -> Self::Output; } impl B for T { type Output = T::OutputA; fn foo() -> Self::Output { loop {} } } fn main() { Bar::foo(); } //^^^^^^^^^^ Foo "#, ); } #[test] fn trait_object_no_coercion() { check_infer_with_mismatches( r#" trait Foo {} fn foo(x: &dyn Foo) {} fn test(x: &dyn Foo) { foo(x); }"#, expect![[r#" 21..22 'x': &dyn Foo 34..36 '{}': () 46..47 'x': &dyn Foo 59..74 '{ foo(x); }': () 65..68 'foo': fn foo(&dyn Foo) 65..71 'foo(x)': () 69..70 'x': &dyn Foo "#]], ); } #[test] fn builtin_copy() { check_infer_with_mismatches( r#" //- minicore: copy struct IsCopy; impl Copy for IsCopy {} struct NotCopy; trait Test { fn test(&self) -> bool; } impl Test for T {} fn test() { IsCopy.test(); NotCopy.test(); (IsCopy, IsCopy).test(); (IsCopy, NotCopy).test(); }"#, expect![[r#" 78..82 'self': &Self 134..235 '{ ...t(); }': () 140..146 'IsCopy': IsCopy 140..153 'IsCopy.test()': bool 159..166 'NotCopy': NotCopy 159..173 'NotCopy.test()': {unknown} 179..195 '(IsCop...sCopy)': (IsCopy, IsCopy) 179..202 '(IsCop...test()': bool 180..186 'IsCopy': IsCopy 188..194 'IsCopy': IsCopy 208..225 '(IsCop...tCopy)': (IsCopy, NotCopy) 208..232 '(IsCop...test()': {unknown} 209..215 'IsCopy': IsCopy 217..224 'NotCopy': NotCopy "#]], ); } #[test] fn builtin_fn_def_copy() { check_infer_with_mismatches( r#" //- minicore: copy fn foo() {} fn bar(T) -> T {} struct Struct(usize); enum Enum { Variant(usize) } trait Test { fn test(&self) -> bool; } impl Test for T {} fn test() { foo.test(); bar.test(); Struct.test(); Enum::Variant.test(); }"#, expect![[r#" 9..11 '{}': () 28..29 'T': {unknown} 36..38 '{}': T 36..38: expected T, got () 113..117 'self': &Self 169..249 '{ ...t(); }': () 175..178 'foo': fn foo() 175..185 'foo.test()': bool 191..194 'bar': fn bar<{unknown}>({unknown}) -> {unknown} 191..201 'bar.test()': bool 207..213 'Struct': Struct(usize) -> Struct 207..220 'Struct.test()': bool 226..239 'Enum::Variant': Variant(usize) -> Enum 226..246 'Enum::...test()': bool "#]], ); } #[test] fn builtin_fn_ptr_copy() { check_infer_with_mismatches( r#" //- minicore: copy trait Test { fn test(&self) -> bool; } impl Test for T {} fn test(f1: fn(), f2: fn(usize) -> u8, f3: fn(u8, u8) -> &u8) { f1.test(); f2.test(); f3.test(); }"#, expect![[r#" 22..26 'self': &Self 76..78 'f1': fn() 86..88 'f2': fn(usize) -> u8 107..109 'f3': fn(u8, u8) -> &u8 130..178 '{ ...t(); }': () 136..138 'f1': fn() 136..145 'f1.test()': bool 151..153 'f2': fn(usize) -> u8 151..160 'f2.test()': bool 166..168 'f3': fn(u8, u8) -> &u8 166..175 'f3.test()': bool "#]], ); } #[test] fn builtin_sized() { check_infer_with_mismatches( r#" //- minicore: sized trait Test { fn test(&self) -> bool; } impl Test for T {} fn test() { 1u8.test(); (*"foo").test(); // not Sized (1u8, 1u8).test(); (1u8, *"foo").test(); // not Sized }"#, expect![[r#" 22..26 'self': &Self 79..194 '{ ...ized }': () 85..88 '1u8': u8 85..95 '1u8.test()': bool 101..116 '(*"foo").test()': {unknown} 102..108 '*"foo"': str 103..108 '"foo"': &str 135..145 '(1u8, 1u8)': (u8, u8) 135..152 '(1u8, ...test()': bool 136..139 '1u8': u8 141..144 '1u8': u8 158..171 '(1u8, *"foo")': (u8, str) 158..178 '(1u8, ...test()': {unknown} 159..162 '1u8': u8 164..170 '*"foo"': str 165..170 '"foo"': &str "#]], ); } #[test] fn integer_range_iterate() { check_types( r#" //- /main.rs crate:main deps:core fn test() { for x in 0..100 { x; } } //^ i32 //- /core.rs crate:core pub mod ops { pub struct Range { pub start: Idx, pub end: Idx, } } pub mod iter { pub trait Iterator { type Item; } pub trait IntoIterator { type Item; type IntoIter: Iterator; } impl IntoIterator for T where T: Iterator { type Item = ::Item; type IntoIter = Self; } } trait Step {} impl Step for i32 {} impl Step for i64 {} impl iter::Iterator for ops::Range { type Item = A; } "#, ); } #[test] fn infer_closure_arg() { check_infer( r#" //- /lib.rs enum Option { None, Some(T) } fn foo() { let s = Option::None; let f = |x: Option| {}; (&f)(s) }"#, expect![[r#" 52..126 '{ ...)(s) }': () 62..63 's': Option 66..78 'Option::None': Option 88..89 'f': |Option| -> () 92..111 '|x: Op...2>| {}': |Option| -> () 93..94 'x': Option 109..111 '{}': () 117..124 '(&f)(s)': () 118..120 '&f': &|Option| -> () 119..120 'f': |Option| -> () 122..123 's': Option "#]], ); } #[test] fn dyn_fn_param_informs_call_site_closure_signature() { cov_mark::check!(dyn_fn_param_informs_call_site_closure_signature); check_types( r#" //- minicore: fn, coerce_unsized struct S; impl S { fn inherent(&self) -> u8 { 0 } } fn take_dyn_fn(f: &dyn Fn(S)) {} fn f() { take_dyn_fn(&|x| { x.inherent(); }); //^^^^^^^^^^^^ u8 } "#, ); } #[test] fn infer_fn_trait_arg() { check_infer_with_mismatches( r#" //- minicore: fn, option fn foo(f: F) -> T where F: Fn(Option) -> T, { let s = None; f(s) } "#, expect![[r#" 13..14 'f': F 59..89 '{ ...f(s) }': T 69..70 's': Option 73..77 'None': Option 83..84 'f': F 83..87 'f(s)': T 85..86 's': Option "#]], ); } #[test] fn infer_box_fn_arg() { // The type mismatch is because we don't define Unsize and CoerceUnsized check_infer_with_mismatches( r#" //- minicore: fn, deref, option #[lang = "owned_box"] pub struct Box { inner: *mut T, } impl core::ops::Deref for Box { type Target = T; fn deref(&self) -> &T { &self.inner } } fn foo() { let s = None; let f: Box)> = box (|ps| {}); f(&s); }"#, expect![[r#" 154..158 'self': &Box 166..193 '{ ... }': &T 176..187 '&self.inner': &*mut T 177..181 'self': &Box 177..187 'self.inner': *mut T 206..296 '{ ...&s); }': () 216..217 's': Option 220..224 'None': Option 234..235 'f': Box)> 269..282 'box (|ps| {})': Box<|&Option| -> ()> 274..281 '|ps| {}': |&Option| -> () 275..277 'ps': &Option 279..281 '{}': () 288..289 'f': Box)> 288..293 'f(&s)': () 290..292 '&s': &Option 291..292 's': Option 269..282: expected Box)>, got Box<|&Option| -> ()> "#]], ); } #[test] fn infer_dyn_fn_output() { check_types( r#" //- minicore: fn fn foo() { let f: &dyn Fn() -> i32; f(); //^^^ i32 }"#, ); } #[test] fn infer_dyn_fn_once_output() { check_types( r#" //- minicore: fn fn foo() { let f: dyn FnOnce() -> i32; f(); //^^^ i32 }"#, ); } #[test] fn variable_kinds_1() { check_types( r#" trait Trait { fn get(self, t: T) -> T; } struct S; impl Trait for S {} impl Trait for S {} fn test() { S.get(1); //^^^^^^^^ u128 S.get(1.); //^^^^^^^^^ f32 } "#, ); } #[test] fn variable_kinds_2() { check_types( r#" trait Trait { fn get(self) -> Self; } impl Trait for u128 {} impl Trait for f32 {} fn test() { 1.get(); //^^^^^^^ u128 (1.).get(); //^^^^^^^^^^ f32 } "#, ); } #[test] fn underscore_import() { check_types( r#" mod tr { pub trait Tr { fn method(&self) -> u8 { 0 } } } struct Tr; impl crate::tr::Tr for Tr {} use crate::tr::Tr as _; fn test() { Tr.method(); //^^^^^^^^^^^ u8 } "#, ); } #[test] fn inner_use() { check_types( r#" mod m { pub trait Tr { fn method(&self) -> u8 { 0 } } impl Tr for () {} } fn f() { use m::Tr; ().method(); //^^^^^^^^^^^ u8 } "#, ); } #[test] fn trait_in_scope_with_inner_item() { check_infer( r#" mod m { pub trait Tr { fn method(&self) -> u8 { 0 } } impl Tr for () {} } use m::Tr; fn f() { fn inner() { ().method(); //^^^^^^^^^^^ u8 } }"#, expect![[r#" 46..50 'self': &Self 58..63 '{ 0 }': u8 60..61 '0': u8 115..185 '{ ... } }': () 132..183 '{ ... }': () 142..144 '()': () 142..153 '().method()': u8 "#]], ); } #[test] fn inner_use_in_block() { check_types( r#" mod m { pub trait Tr { fn method(&self) -> u8 { 0 } } impl Tr for () {} } fn f() { { use m::Tr; ().method(); //^^^^^^^^^^^ u8 } { ().method(); //^^^^^^^^^^^ {unknown} } ().method(); //^^^^^^^^^^^ {unknown} } "#, ); } #[test] fn nested_inner_function_calling_self() { check_infer( r#" struct S; fn f() { fn inner() -> S { let s = inner(); } }"#, expect![[r#" 17..73 '{ ... } }': () 39..71 '{ ... }': S 53..54 's': S 57..62 'inner': fn inner() -> S 57..64 'inner()': S "#]], ) } #[test] fn infer_default_trait_type_parameter() { check_infer( r#" struct A; trait Op { type Output; fn do_op(self, rhs: RHS) -> Self::Output; } impl Op for A { type Output = bool; fn do_op(self, rhs: Self) -> Self::Output { true } } fn test() { let x = A; let y = A; let r = x.do_op(y); }"#, expect![[r#" 63..67 'self': Self 69..72 'rhs': RHS 153..157 'self': A 159..162 'rhs': A 186..206 '{ ... }': bool 196..200 'true': bool 220..277 '{ ...(y); }': () 230..231 'x': A 234..235 'A': A 245..246 'y': A 249..250 'A': A 260..261 'r': bool 264..265 'x': A 264..274 'x.do_op(y)': bool 272..273 'y': A "#]], ) } #[test] fn qualified_path_as_qualified_trait() { check_infer( r#" mod foo { pub trait Foo { type Target; } pub trait Bar { type Output; fn boo() -> Self::Output { loop {} } } } struct F; impl foo::Foo for F { type Target = (); } impl foo::Bar for F { type Output = ::Target; } fn foo() { use foo::Bar; let x = ::boo(); }"#, expect![[r#" 132..163 '{ ... }': Bar::Output 146..153 'loop {}': ! 151..153 '{}': () 306..358 '{ ...o(); }': () 334..335 'x': () 338..353 '::boo': fn boo() -> ::Output 338..355 ' u8 { 0 } } }; fn foo() { Foo::deserialize(); //^^^^^^^^^^^^^^^^^^ u8 } //- /serde.rs crate:serde pub trait Deserialize { fn deserialize() -> u8; }"#, ); } #[test] fn bin_op_with_rhs_is_self_for_assoc_bound() { check_no_mismatches( r#"//- minicore: eq fn repro(t: T) -> bool where T: Request, T::Output: Convertable, { let a = execute(&t).convert(); let b = execute(&t).convert(); a.eq(&b); let a = execute(&t).convert2(); let b = execute(&t).convert2(); a.eq(&b) } fn execute(t: &T) -> T::Output where T: Request, { ::output() } trait Convertable { type TraitSelf: PartialEq; type AssocAsDefaultSelf: PartialEq; fn convert(self) -> Self::AssocAsDefaultSelf; fn convert2(self) -> Self::TraitSelf; } trait Request { type Output; fn output() -> Self::Output; } "#, ); } #[test] fn bin_op_adt_with_rhs_primitive() { check_infer_with_mismatches( r#" #[lang = "add"] pub trait Add { type Output; fn add(self, rhs: Rhs) -> Self::Output; } struct Wrapper(u32); impl Add for Wrapper { type Output = Self; fn add(self, rhs: u32) -> Wrapper { Wrapper(rhs) } } fn main(){ let wrapped = Wrapper(10); let num: u32 = 2; let res = wrapped + num; }"#, expect![[r#" 72..76 'self': Self 78..81 'rhs': Rhs 192..196 'self': Wrapper 198..201 'rhs': u32 219..247 '{ ... }': Wrapper 229..236 'Wrapper': Wrapper(u32) -> Wrapper 229..241 'Wrapper(rhs)': Wrapper 237..240 'rhs': u32 259..345 '{ ...um; }': () 269..276 'wrapped': Wrapper 279..286 'Wrapper': Wrapper(u32) -> Wrapper 279..290 'Wrapper(10)': Wrapper 287..289 '10': u32 300..303 'num': u32 311..312 '2': u32 322..325 'res': Wrapper 328..335 'wrapped': Wrapper 328..341 'wrapped + num': Wrapper 338..341 'num': u32 "#]], ) } #[test] fn array_length() { check_infer( r#" trait T { type Output; fn do_thing(&self) -> Self::Output; } impl T for [u8; 4] { type Output = usize; fn do_thing(&self) -> Self::Output { 2 } } impl T for [u8; 2] { type Output = u8; fn do_thing(&self) -> Self::Output { 2 } } fn main() { let v = [0u8; 2]; let v2 = v.do_thing(); let v3 = [0u8; 4]; let v4 = v3.do_thing(); } "#, expect![[r#" 44..48 'self': &Self 133..137 'self': &[u8; 4] 155..172 '{ ... }': usize 165..166 '2': usize 236..240 'self': &[u8; 2] 258..275 '{ ... }': u8 268..269 '2': u8 289..392 '{ ...g(); }': () 299..300 'v': [u8; 2] 303..311 '[0u8; 2]': [u8; 2] 304..307 '0u8': u8 309..310 '2': usize 321..323 'v2': u8 326..327 'v': [u8; 2] 326..338 'v.do_thing()': u8 348..350 'v3': [u8; 4] 353..361 '[0u8; 4]': [u8; 4] 354..357 '0u8': u8 359..360 '4': usize 371..373 'v4': usize 376..378 'v3': [u8; 4] 376..389 'v3.do_thing()': usize "#]], ) } #[test] fn const_generics() { check_infer( r#" trait T { type Output; fn do_thing(&self) -> Self::Output; } impl T for [u8; L] { type Output = [u8; L]; fn do_thing(&self) -> Self::Output { *self } } fn main() { let v = [0u8; 2]; let v2 = v.do_thing(); } "#, expect![[r#" 44..48 'self': &Self 151..155 'self': &[u8; L] 173..194 '{ ... }': [u8; L] 183..188 '*self': [u8; L] 184..188 'self': &[u8; L] 208..260 '{ ...g(); }': () 218..219 'v': [u8; 2] 222..230 '[0u8; 2]': [u8; 2] 223..226 '0u8': u8 228..229 '2': usize 240..242 'v2': [u8; 2] 245..246 'v': [u8; 2] 245..257 'v.do_thing()': [u8; 2] "#]], ) } #[test] fn fn_returning_unit() { check_infer_with_mismatches( r#" //- minicore: fn fn test(f: F) { let _: () = f(); }"#, expect![[r#" 21..22 'f': F 27..51 '{ ...f(); }': () 37..38 '_': () 45..46 'f': F 45..48 'f()': () "#]], ); } #[test] fn trait_in_scope_of_trait_impl() { check_infer( r#" mod foo { pub trait Foo { fn foo(self); fn bar(self) -> usize { 0 } } } impl foo::Foo for u32 { fn foo(self) { let _x = self.bar(); } } "#, expect![[r#" 45..49 'self': Self 67..71 'self': Self 82..87 '{ 0 }': usize 84..85 '0': usize 131..135 'self': u32 137..173 '{ ... }': () 151..153 '_x': usize 156..160 'self': u32 156..166 'self.bar()': usize "#]], ); } #[test] fn infer_async_ret_type() { check_types( r#" //- minicore: future, result struct Fooey; impl Fooey { fn collect(self) -> B { B::new() } } trait Convert { fn new() -> Self; } impl Convert for u32 { fn new() -> Self { 0 } } async fn get_accounts() -> Result { let ret = Fooey.collect(); // ^^^^^^^^^^^^^^^ u32 Ok(ret) } "#, ); } #[test] fn local_impl_1() { check!(block_local_impls); check_types( r#" trait Trait { fn foo(&self) -> T; } fn test() { struct S; impl Trait for S { fn foo(&self) -> u32 { 0 } } S.foo(); // ^^^^^^^ u32 } "#, ); } #[test] fn local_impl_2() { check!(block_local_impls); check_types( r#" struct S; fn test() { trait Trait { fn foo(&self) -> T; } impl Trait for S { fn foo(&self) -> u32 { 0 } } S.foo(); // ^^^^^^^ u32 } "#, ); } #[test] fn local_impl_3() { check!(block_local_impls); check_types( r#" trait Trait { fn foo(&self) -> T; } fn test() { struct S1; { struct S2; impl Trait for S2 { fn foo(&self) -> S1 { S1 } } S2.foo(); // ^^^^^^^^ S1 } } "#, ); } #[test] fn associated_type_sized_bounds() { check_infer( r#" //- minicore: sized struct Yes; trait IsSized { const IS_SIZED: Yes; } impl IsSized for T { const IS_SIZED: Yes = Yes; } trait Foo { type Explicit: Sized; type Implicit; type Relaxed: ?Sized; } fn f() { F::Explicit::IS_SIZED; F::Implicit::IS_SIZED; F::Relaxed::IS_SIZED; } "#, expect![[r#" 104..107 'Yes': Yes 212..295 '{ ...ZED; }': () 218..239 'F::Exp..._SIZED': Yes 245..266 'F::Imp..._SIZED': Yes 272..292 'F::Rel..._SIZED': {unknown} "#]], ); } #[test] fn dyn_map() { check_types( r#" pub struct Key {} pub trait Policy { type K; type V; } impl Policy for (K, V) { type K = K; type V = V; } pub struct KeyMap {} impl KeyMap> { pub fn get(&self, key: &P::K) -> P::V { loop {} } } struct Fn {} struct FunctionId {} fn test() { let key_map: &KeyMap> = loop {}; let key; let result = key_map.get(key); //^^^^^^ FunctionId } "#, ) } #[test] fn dyn_multiple_auto_traits_in_different_order() { check_no_mismatches( r#" auto trait Send {} auto trait Sync {} fn f(t: &(dyn Sync + Send)) {} fn g(t: &(dyn Send + Sync)) { f(t); } "#, ); check_no_mismatches( r#" auto trait Send {} auto trait Sync {} trait T {} fn f(t: &(dyn T + Send + Sync)) {} fn g(t: &(dyn Sync + T + Send)) { f(t); } "#, ); check_infer_with_mismatches( r#" auto trait Send {} auto trait Sync {} trait T1 {} trait T2 {} fn f(t: &(dyn T1 + T2 + Send + Sync)) {} fn g(t: &(dyn Sync + T2 + T1 + Send)) { f(t); } "#, expect![[r#" 68..69 't': &{unknown} 101..103 '{}': () 109..110 't': &{unknown} 142..155 '{ f(t); }': () 148..149 'f': fn f(&{unknown}) 148..152 'f(t)': () 150..151 't': &{unknown} "#]], ); check_no_mismatches( r#" auto trait Send {} auto trait Sync {} trait T { type Proj: Send + Sync; } fn f(t: &(dyn T + Send + Sync)) {} fn g(t: &(dyn Sync + T + Send)) { f(t); } "#, ); } #[test] fn dyn_multiple_projection_bounds() { check_no_mismatches( r#" trait Trait { type T; type U; } fn f(t: &dyn Trait) {} fn g(t: &dyn Trait) { f(t); } "#, ); check_types( r#" trait Trait { type T; } fn f(t: &dyn Trait) {} //^&{unknown} "#, ); } #[test] fn dyn_duplicate_auto_trait() { check_no_mismatches( r#" auto trait Send {} fn f(t: &(dyn Send + Send)) {} fn g(t: &(dyn Send)) { f(t); } "#, ); check_no_mismatches( r#" auto trait Send {} trait T {} fn f(t: &(dyn T + Send + Send)) {} fn g(t: &(dyn T + Send)) { f(t); } "#, ); } #[test] fn gats_in_path() { check_types( r#" //- minicore: deref use core::ops::Deref; trait PointerFamily { type Pointer: Deref; } fn f(p: P::Pointer) { let a = *p; //^ i32 } fn g(p:

::Pointer) { let a = *p; //^ i32 } "#, ); } #[test] fn gats_with_impl_trait() { // FIXME: the last function (`fn i()`) is not valid Rust as of this writing because you cannot // specify the same associated type multiple times even if their arguments are different (c.f. // `fn h()`, which is valid). Reconsider how to treat these invalid types. check_types( r#" //- minicore: deref use core::ops::Deref; trait Trait { type Assoc: Deref; fn get(&self) -> Self::Assoc; } fn f(v: impl Trait) { let a = v.get::().deref(); //^ &i32 let a = v.get::().deref(); //^ &T } fn g<'a, T: 'a>(v: impl Trait = &'a T>) { let a = v.get::(); //^ &T let a = v.get::<()>(); //^ Trait::Assoc<(), impl Trait = &T>> } fn h<'a>(v: impl Trait = &'a i32> + Trait = &'a i64>) { let a = v.get::(); //^ &i32 let a = v.get::(); //^ &i64 } fn i<'a>(v: impl Trait = &'a i32, Assoc = &'a i64>) { let a = v.get::(); //^ &i32 let a = v.get::(); //^ &i64 } "#, ); } #[test] fn gats_with_dyn() { // This test is here to keep track of how we infer things despite traits with GATs being not // object-safe currently. // FIXME: reconsider how to treat these invalid types. check_infer_with_mismatches( r#" //- minicore: deref use core::ops::Deref; trait Trait { type Assoc: Deref; fn get(&self) -> Self::Assoc; } fn f<'a>(v: &dyn Trait = &'a i32>) { v.get::().deref(); } "#, expect![[r#" 90..94 'self': &Self 127..128 'v': &(dyn Trait = &i32>) 164..195 '{ ...f(); }': () 170..171 'v': &(dyn Trait = &i32>) 170..184 'v.get::()': &i32 170..192 'v.get:...eref()': &i32 "#]], ); } #[test] fn gats_in_associated_type_binding() { check_types( r#" trait Trait { type Assoc; fn get(&self) -> Self::Assoc; } fn f(t: T) where T: Trait = u32>, T: Trait = usize>, { let a = t.get::(); //^ u32 let a = t.get::(); //^ usize let a = t.get::<()>(); //^ Trait::Assoc<(), T> } "#, ); } #[test] fn bin_op_with_scalar_fallback() { // Extra impls are significant so that chalk doesn't give us definite guidances. check_types( r#" //- minicore: add use core::ops::Add; struct Vec2(T, T); impl Add for Vec2 { type Output = Self; fn add(self, rhs: Self) -> Self::Output { loop {} } } impl Add for Vec2 { type Output = Self; fn add(self, rhs: Self) -> Self::Output { loop {} } } impl Add for Vec2 { type Output = Self; fn add(self, rhs: Self) -> Self::Output { loop {} } } impl Add for Vec2 { type Output = Self; fn add(self, rhs: Self) -> Self::Output { loop {} } } fn test() { let a = Vec2(1, 2); let b = Vec2(3, 4); let c = a + b; //^ Vec2 let a = Vec2(1., 2.); let b = Vec2(3., 4.); let c = a + b; //^ Vec2 } "#, ); } #[test] fn trait_method_with_scalar_fallback() { check_types( r#" trait Trait { type Output; fn foo(&self) -> Self::Output; } impl Trait for T { type Output = T; fn foo(&self) -> Self::Output { loop {} } } fn test() { let a = 42; let b = a.foo(); //^ i32 let a = 3.14; let b = a.foo(); //^ f64 } "#, ); }