//! Assorted functions shared by several assists. use std::ops; pub(crate) use gen_trait_fn_body::gen_trait_fn_body; use hir::{db::HirDatabase, HirDisplay, Semantics}; use ide_db::{famous_defs::FamousDefs, path_transform::PathTransform, RootDatabase, SnippetCap}; use stdx::format_to; use syntax::{ ast::{ self, edit::{self, AstNodeEdit}, edit_in_place::{AttrsOwnerEdit, Removable}, make, HasArgList, HasAttrs, HasGenericParams, HasName, HasTypeBounds, Whitespace, }, ted, AstNode, AstToken, Direction, SourceFile, SyntaxKind::*, SyntaxNode, TextRange, TextSize, T, }; use crate::assist_context::{AssistContext, SourceChangeBuilder}; pub(crate) mod suggest_name; mod gen_trait_fn_body; pub(crate) fn unwrap_trivial_block(block_expr: ast::BlockExpr) -> ast::Expr { extract_trivial_expression(&block_expr) .filter(|expr| !expr.syntax().text().contains_char('\n')) .unwrap_or_else(|| block_expr.into()) } pub fn extract_trivial_expression(block_expr: &ast::BlockExpr) -> Option { if block_expr.modifier().is_some() { return None; } let stmt_list = block_expr.stmt_list()?; let has_anything_else = |thing: &SyntaxNode| -> bool { let mut non_trivial_children = stmt_list.syntax().children_with_tokens().filter(|it| match it.kind() { WHITESPACE | T!['{'] | T!['}'] => false, _ => it.as_node() != Some(thing), }); non_trivial_children.next().is_some() }; if let Some(expr) = stmt_list.tail_expr() { if has_anything_else(expr.syntax()) { return None; } return Some(expr); } // Unwrap `{ continue; }` let stmt = stmt_list.statements().next()?; if let ast::Stmt::ExprStmt(expr_stmt) = stmt { if has_anything_else(expr_stmt.syntax()) { return None; } let expr = expr_stmt.expr()?; if matches!(expr.syntax().kind(), CONTINUE_EXPR | BREAK_EXPR | RETURN_EXPR) { return Some(expr); } } None } /// This is a method with a heuristics to support test methods annotated with custom test annotations, such as /// `#[test_case(...)]`, `#[tokio::test]` and similar. /// Also a regular `#[test]` annotation is supported. /// /// It may produce false positives, for example, `#[wasm_bindgen_test]` requires a different command to run the test, /// but it's better than not to have the runnables for the tests at all. pub fn test_related_attribute(fn_def: &ast::Fn) -> Option { fn_def.attrs().find_map(|attr| { let path = attr.path()?; let text = path.syntax().text().to_string(); if text.starts_with("test") || text.ends_with("test") { Some(attr) } else { None } }) } #[derive(Copy, Clone, PartialEq)] pub enum DefaultMethods { Only, No, } pub fn filter_assoc_items( sema: &Semantics<'_, RootDatabase>, items: &[hir::AssocItem], default_methods: DefaultMethods, ) -> Vec { fn has_def_name(item: &ast::AssocItem) -> bool { match item { ast::AssocItem::Fn(def) => def.name(), ast::AssocItem::TypeAlias(def) => def.name(), ast::AssocItem::Const(def) => def.name(), ast::AssocItem::MacroCall(_) => None, } .is_some() } items .iter() // Note: This throws away items with no source. .filter_map(|&i| { let item = match i { hir::AssocItem::Function(i) => ast::AssocItem::Fn(sema.source(i)?.value), hir::AssocItem::TypeAlias(i) => ast::AssocItem::TypeAlias(sema.source(i)?.value), hir::AssocItem::Const(i) => ast::AssocItem::Const(sema.source(i)?.value), }; Some(item) }) .filter(has_def_name) .filter(|it| match it { ast::AssocItem::Fn(def) => matches!( (default_methods, def.body()), (DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None) ), ast::AssocItem::Const(def) => matches!( (default_methods, def.body()), (DefaultMethods::Only, Some(_)) | (DefaultMethods::No, None) ), _ => default_methods == DefaultMethods::No, }) .collect::>() } pub fn add_trait_assoc_items_to_impl( sema: &Semantics<'_, RootDatabase>, items: Vec, trait_: hir::Trait, impl_: ast::Impl, target_scope: hir::SemanticsScope<'_>, ) -> (ast::Impl, ast::AssocItem) { let source_scope = sema.scope_for_def(trait_); let transform = PathTransform::trait_impl(&target_scope, &source_scope, trait_, impl_.clone()); let items = items.into_iter().map(|assoc_item| { transform.apply(assoc_item.syntax()); assoc_item.remove_attrs_and_docs(); assoc_item }); let res = impl_.clone_for_update(); let assoc_item_list = res.get_or_create_assoc_item_list(); let mut first_item = None; for item in items { first_item.get_or_insert_with(|| item.clone()); match &item { ast::AssocItem::Fn(fn_) if fn_.body().is_none() => { let body = make::block_expr(None, Some(make::ext::expr_todo())) .indent(edit::IndentLevel(1)); ted::replace(fn_.get_or_create_body().syntax(), body.clone_for_update().syntax()) } ast::AssocItem::TypeAlias(type_alias) => { if let Some(type_bound_list) = type_alias.type_bound_list() { type_bound_list.remove() } } _ => {} } assoc_item_list.add_item(item) } (res, first_item.unwrap()) } #[derive(Clone, Copy, Debug)] pub(crate) enum Cursor<'a> { Replace(&'a SyntaxNode), Before(&'a SyntaxNode), } impl<'a> Cursor<'a> { fn node(self) -> &'a SyntaxNode { match self { Cursor::Replace(node) | Cursor::Before(node) => node, } } } pub(crate) fn render_snippet(_cap: SnippetCap, node: &SyntaxNode, cursor: Cursor<'_>) -> String { assert!(cursor.node().ancestors().any(|it| it == *node)); let range = cursor.node().text_range() - node.text_range().start(); let range: ops::Range = range.into(); let mut placeholder = cursor.node().to_string(); escape(&mut placeholder); let tab_stop = match cursor { Cursor::Replace(placeholder) => format!("${{0:{placeholder}}}"), Cursor::Before(placeholder) => format!("$0{placeholder}"), }; let mut buf = node.to_string(); buf.replace_range(range, &tab_stop); return buf; fn escape(buf: &mut String) { stdx::replace(buf, '{', r"\{"); stdx::replace(buf, '}', r"\}"); stdx::replace(buf, '$', r"\$"); } } pub(crate) fn vis_offset(node: &SyntaxNode) -> TextSize { node.children_with_tokens() .find(|it| !matches!(it.kind(), WHITESPACE | COMMENT | ATTR)) .map(|it| it.text_range().start()) .unwrap_or_else(|| node.text_range().start()) } pub(crate) fn invert_boolean_expression(expr: ast::Expr) -> ast::Expr { invert_special_case(&expr).unwrap_or_else(|| make::expr_prefix(T![!], expr)) } fn invert_special_case(expr: &ast::Expr) -> Option { match expr { ast::Expr::BinExpr(bin) => { let bin = bin.clone_for_update(); let op_token = bin.op_token()?; let rev_token = match op_token.kind() { T![==] => T![!=], T![!=] => T![==], T![<] => T![>=], T![<=] => T![>], T![>] => T![<=], T![>=] => T![<], // Parenthesize other expressions before prefixing `!` _ => return Some(make::expr_prefix(T![!], make::expr_paren(expr.clone()))), }; ted::replace(op_token, make::token(rev_token)); Some(bin.into()) } ast::Expr::MethodCallExpr(mce) => { let receiver = mce.receiver()?; let method = mce.name_ref()?; let arg_list = mce.arg_list()?; let method = match method.text().as_str() { "is_some" => "is_none", "is_none" => "is_some", "is_ok" => "is_err", "is_err" => "is_ok", _ => return None, }; Some(make::expr_method_call(receiver, make::name_ref(method), arg_list)) } ast::Expr::PrefixExpr(pe) if pe.op_kind()? == ast::UnaryOp::Not => match pe.expr()? { ast::Expr::ParenExpr(parexpr) => parexpr.expr(), _ => pe.expr(), }, ast::Expr::Literal(lit) => match lit.kind() { ast::LiteralKind::Bool(b) => match b { true => Some(ast::Expr::Literal(make::expr_literal("false"))), false => Some(ast::Expr::Literal(make::expr_literal("true"))), }, _ => None, }, _ => None, } } pub(crate) fn next_prev() -> impl Iterator { [Direction::Next, Direction::Prev].into_iter() } pub(crate) fn does_pat_match_variant(pat: &ast::Pat, var: &ast::Pat) -> bool { let first_node_text = |pat: &ast::Pat| pat.syntax().first_child().map(|node| node.text()); let pat_head = match pat { ast::Pat::IdentPat(bind_pat) => match bind_pat.pat() { Some(p) => first_node_text(&p), None => return pat.syntax().text() == var.syntax().text(), }, pat => first_node_text(pat), }; let var_head = first_node_text(var); pat_head == var_head } pub(crate) fn does_nested_pattern(pat: &ast::Pat) -> bool { let depth = calc_depth(pat, 0); if 1 < depth { return true; } false } fn calc_depth(pat: &ast::Pat, depth: usize) -> usize { match pat { ast::Pat::IdentPat(_) | ast::Pat::BoxPat(_) | ast::Pat::RestPat(_) | ast::Pat::LiteralPat(_) | ast::Pat::MacroPat(_) | ast::Pat::OrPat(_) | ast::Pat::ParenPat(_) | ast::Pat::PathPat(_) | ast::Pat::WildcardPat(_) | ast::Pat::RangePat(_) | ast::Pat::RecordPat(_) | ast::Pat::RefPat(_) | ast::Pat::SlicePat(_) | ast::Pat::TuplePat(_) | ast::Pat::ConstBlockPat(_) => depth, // FIXME: Other patterns may also be nested. Currently it simply supports only `TupleStructPat` ast::Pat::TupleStructPat(pat) => { let mut max_depth = depth; for p in pat.fields() { let d = calc_depth(&p, depth + 1); if d > max_depth { max_depth = d } } max_depth } } } // Uses a syntax-driven approach to find any impl blocks for the struct that // exist within the module/file // // Returns `None` if we've found an existing fn // // FIXME: change the new fn checking to a more semantic approach when that's more // viable (e.g. we process proc macros, etc) // FIXME: this partially overlaps with `find_impl_block_*` /// `find_struct_impl` looks for impl of a struct, but this also has additional feature /// where it takes a list of function names and check if they exist inside impl_, if /// even one match is found, it returns None pub(crate) fn find_struct_impl( ctx: &AssistContext<'_>, adt: &ast::Adt, names: &[String], ) -> Option> { let db = ctx.db(); let module = adt.syntax().parent()?; let struct_def = ctx.sema.to_def(adt)?; let block = module.descendants().filter_map(ast::Impl::cast).find_map(|impl_blk| { let blk = ctx.sema.to_def(&impl_blk)?; // FIXME: handle e.g. `struct S; impl S {}` // (we currently use the wrong type parameter) // also we wouldn't want to use e.g. `impl S` let same_ty = match blk.self_ty(db).as_adt() { Some(def) => def == struct_def, None => false, }; let not_trait_impl = blk.trait_(db).is_none(); if !(same_ty && not_trait_impl) { None } else { Some(impl_blk) } }); if let Some(ref impl_blk) = block { if has_any_fn(impl_blk, names) { return None; } } Some(block) } fn has_any_fn(imp: &ast::Impl, names: &[String]) -> bool { if let Some(il) = imp.assoc_item_list() { for item in il.assoc_items() { if let ast::AssocItem::Fn(f) = item { if let Some(name) = f.name() { if names.iter().any(|n| n.eq_ignore_ascii_case(&name.text())) { return true; } } } } } false } /// Find the start of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_start(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let start = impl_def.assoc_item_list().and_then(|it| it.l_curly_token())?.text_range().end(); Some(start) } /// Find the end of the `impl` block for the given `ast::Impl`. // // FIXME: this partially overlaps with `find_struct_impl` pub(crate) fn find_impl_block_end(impl_def: ast::Impl, buf: &mut String) -> Option { buf.push('\n'); let end = impl_def .assoc_item_list() .and_then(|it| it.r_curly_token())? .prev_sibling_or_token()? .text_range() .end(); Some(end) } /// Generates the surrounding `impl Type { }` including type and lifetime /// parameters. pub(crate) fn generate_impl_text(adt: &ast::Adt, code: &str) -> String { generate_impl_text_inner(adt, None, true, code) } /// Generates the surrounding `impl for Type { }` including type /// and lifetime parameters, with `` appended to `impl`'s generic parameters' bounds. /// /// This is useful for traits like `PartialEq`, since `impl PartialEq for U` often requires `T: PartialEq`. pub(crate) fn generate_trait_impl_text(adt: &ast::Adt, trait_text: &str, code: &str) -> String { generate_impl_text_inner(adt, Some(trait_text), true, code) } /// Generates the surrounding `impl for Type { }` including type /// and lifetime parameters, with `impl`'s generic parameters' bounds kept as-is. /// /// This is useful for traits like `From`, since `impl From for U` doesn't require `T: From`. pub(crate) fn generate_trait_impl_text_intransitive( adt: &ast::Adt, trait_text: &str, code: &str, ) -> String { generate_impl_text_inner(adt, Some(trait_text), false, code) } fn generate_impl_text_inner( adt: &ast::Adt, trait_text: Option<&str>, trait_is_transitive: bool, code: &str, ) -> String { // Ensure lifetime params are before type & const params let generic_params = adt.generic_param_list().map(|generic_params| { let lifetime_params = generic_params.lifetime_params().map(ast::GenericParam::LifetimeParam); let ty_or_const_params = generic_params.type_or_const_params().map(|param| { match param { ast::TypeOrConstParam::Type(param) => { let param = param.clone_for_update(); // remove defaults since they can't be specified in impls param.remove_default(); let mut bounds = param.type_bound_list().map_or_else(Vec::new, |it| it.bounds().collect()); if let Some(trait_) = trait_text { // Add the current trait to `bounds` if the trait is transitive, // meaning `impl Trait for U` requires `T: Trait`. if trait_is_transitive { bounds.push(make::type_bound(trait_)); } }; // `{ty_param}: {bounds}` let param = make::type_param(param.name().unwrap(), make::type_bound_list(bounds)); ast::GenericParam::TypeParam(param) } ast::TypeOrConstParam::Const(param) => { let param = param.clone_for_update(); // remove defaults since they can't be specified in impls param.remove_default(); ast::GenericParam::ConstParam(param) } } }); make::generic_param_list(itertools::chain(lifetime_params, ty_or_const_params)) }); // FIXME: use syntax::make & mutable AST apis instead // `trait_text` and `code` can't be opaque blobs of text let mut buf = String::with_capacity(code.len()); // Copy any cfg attrs from the original adt buf.push_str("\n\n"); let cfg_attrs = adt .attrs() .filter(|attr| attr.as_simple_call().map(|(name, _arg)| name == "cfg").unwrap_or(false)); cfg_attrs.for_each(|attr| buf.push_str(&format!("{attr}\n"))); // `impl{generic_params} {trait_text} for {name}{generic_params.to_generic_args()}` buf.push_str("impl"); if let Some(generic_params) = &generic_params { format_to!(buf, "{generic_params}"); } buf.push(' '); if let Some(trait_text) = trait_text { buf.push_str(trait_text); buf.push_str(" for "); } buf.push_str(&adt.name().unwrap().text()); if let Some(generic_params) = generic_params { format_to!(buf, "{}", generic_params.to_generic_args()); } match adt.where_clause() { Some(where_clause) => { format_to!(buf, "\n{where_clause}\n{{\n{code}\n}}"); } None => { format_to!(buf, " {{\n{code}\n}}"); } } buf } pub(crate) fn add_method_to_adt( builder: &mut SourceChangeBuilder, adt: &ast::Adt, impl_def: Option, method: &str, ) { let mut buf = String::with_capacity(method.len() + 2); if impl_def.is_some() { buf.push('\n'); } buf.push_str(method); let start_offset = impl_def .and_then(|impl_def| find_impl_block_end(impl_def, &mut buf)) .unwrap_or_else(|| { buf = generate_impl_text(adt, &buf); adt.syntax().text_range().end() }); builder.insert(start_offset, buf); } #[derive(Debug)] pub(crate) struct ReferenceConversion { conversion: ReferenceConversionType, ty: hir::Type, } #[derive(Debug)] enum ReferenceConversionType { // reference can be stripped if the type is Copy Copy, // &String -> &str AsRefStr, // &Vec -> &[T] AsRefSlice, // &Box -> &T Dereferenced, // &Option -> Option<&T> Option, // &Result -> Result<&T, &E> Result, } impl ReferenceConversion { pub(crate) fn convert_type(&self, db: &dyn HirDatabase) -> String { match self.conversion { ReferenceConversionType::Copy => self.ty.display(db).to_string(), ReferenceConversionType::AsRefStr => "&str".to_string(), ReferenceConversionType::AsRefSlice => { let type_argument_name = self.ty.type_arguments().next().unwrap().display(db).to_string(); format!("&[{type_argument_name}]") } ReferenceConversionType::Dereferenced => { let type_argument_name = self.ty.type_arguments().next().unwrap().display(db).to_string(); format!("&{type_argument_name}") } ReferenceConversionType::Option => { let type_argument_name = self.ty.type_arguments().next().unwrap().display(db).to_string(); format!("Option<&{type_argument_name}>") } ReferenceConversionType::Result => { let mut type_arguments = self.ty.type_arguments(); let first_type_argument_name = type_arguments.next().unwrap().display(db).to_string(); let second_type_argument_name = type_arguments.next().unwrap().display(db).to_string(); format!("Result<&{first_type_argument_name}, &{second_type_argument_name}>") } } } pub(crate) fn getter(&self, field_name: String) -> String { match self.conversion { ReferenceConversionType::Copy => format!("self.{field_name}"), ReferenceConversionType::AsRefStr | ReferenceConversionType::AsRefSlice | ReferenceConversionType::Dereferenced | ReferenceConversionType::Option | ReferenceConversionType::Result => format!("self.{field_name}.as_ref()"), } } } // FIXME: It should return a new hir::Type, but currently constructing new types is too cumbersome // and all users of this function operate on string type names, so they can do the conversion // itself themselves. pub(crate) fn convert_reference_type( ty: hir::Type, db: &RootDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option { handle_copy(&ty, db) .or_else(|| handle_as_ref_str(&ty, db, famous_defs)) .or_else(|| handle_as_ref_slice(&ty, db, famous_defs)) .or_else(|| handle_dereferenced(&ty, db, famous_defs)) .or_else(|| handle_option_as_ref(&ty, db, famous_defs)) .or_else(|| handle_result_as_ref(&ty, db, famous_defs)) .map(|conversion| ReferenceConversion { ty, conversion }) } fn handle_copy(ty: &hir::Type, db: &dyn HirDatabase) -> Option { ty.is_copy(db).then_some(ReferenceConversionType::Copy) } fn handle_as_ref_str( ty: &hir::Type, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option { let str_type = hir::BuiltinType::str().ty(db); ty.impls_trait(db, famous_defs.core_convert_AsRef()?, &[str_type]) .then_some(ReferenceConversionType::AsRefStr) } fn handle_as_ref_slice( ty: &hir::Type, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option { let type_argument = ty.type_arguments().next()?; let slice_type = hir::Type::new_slice(type_argument); ty.impls_trait(db, famous_defs.core_convert_AsRef()?, &[slice_type]) .then_some(ReferenceConversionType::AsRefSlice) } fn handle_dereferenced( ty: &hir::Type, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option { let type_argument = ty.type_arguments().next()?; ty.impls_trait(db, famous_defs.core_convert_AsRef()?, &[type_argument]) .then_some(ReferenceConversionType::Dereferenced) } fn handle_option_as_ref( ty: &hir::Type, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option { if ty.as_adt() == famous_defs.core_option_Option()?.ty(db).as_adt() { Some(ReferenceConversionType::Option) } else { None } } fn handle_result_as_ref( ty: &hir::Type, db: &dyn HirDatabase, famous_defs: &FamousDefs<'_, '_>, ) -> Option { if ty.as_adt() == famous_defs.core_result_Result()?.ty(db).as_adt() { Some(ReferenceConversionType::Result) } else { None } } pub(crate) fn get_methods(items: &ast::AssocItemList) -> Vec { items .assoc_items() .flat_map(|i| match i { ast::AssocItem::Fn(f) => Some(f), _ => None, }) .filter(|f| f.name().is_some()) .collect() } /// Trim(remove leading and trailing whitespace) `initial_range` in `source_file`, return the trimmed range. pub(crate) fn trimmed_text_range(source_file: &SourceFile, initial_range: TextRange) -> TextRange { let mut trimmed_range = initial_range; while source_file .syntax() .token_at_offset(trimmed_range.start()) .find_map(Whitespace::cast) .is_some() && trimmed_range.start() < trimmed_range.end() { let start = trimmed_range.start() + TextSize::from(1); trimmed_range = TextRange::new(start, trimmed_range.end()); } while source_file .syntax() .token_at_offset(trimmed_range.end()) .find_map(Whitespace::cast) .is_some() && trimmed_range.start() < trimmed_range.end() { let end = trimmed_range.end() - TextSize::from(1); trimmed_range = TextRange::new(trimmed_range.start(), end); } trimmed_range } /// Convert a list of function params to a list of arguments that can be passed /// into a function call. pub(crate) fn convert_param_list_to_arg_list(list: ast::ParamList) -> ast::ArgList { let mut args = vec![]; for param in list.params() { if let Some(ast::Pat::IdentPat(pat)) = param.pat() { if let Some(name) = pat.name() { let name = name.to_string(); let expr = make::expr_path(make::ext::ident_path(&name)); args.push(expr); } } } make::arg_list(args) } /// Calculate the number of hashes required for a raw string containing `s` pub(crate) fn required_hashes(s: &str) -> usize { let mut res = 0usize; for idx in s.match_indices('"').map(|(i, _)| i) { let (_, sub) = s.split_at(idx + 1); let n_hashes = sub.chars().take_while(|c| *c == '#').count(); res = res.max(n_hashes + 1) } res } #[test] fn test_required_hashes() { assert_eq!(0, required_hashes("abc")); assert_eq!(0, required_hashes("###")); assert_eq!(1, required_hashes("\"")); assert_eq!(2, required_hashes("\"#abc")); assert_eq!(0, required_hashes("#abc")); assert_eq!(3, required_hashes("#ab\"##c")); assert_eq!(5, required_hashes("#ab\"##\"####c")); }