//! `mbe` (short for Macro By Example) crate contains code for handling //! `macro_rules` macros. It uses `TokenTree` (from `tt` package) as the //! interface, although it contains some code to bridge `SyntaxNode`s and //! `TokenTree`s as well! //! //! The tes for this functionality live in another crate: //! `hir_def::macro_expansion_tests::mbe`. #![warn(rust_2018_idioms, unused_lifetimes, semicolon_in_expressions_from_macros)] mod parser; mod expander; mod syntax_bridge; mod tt_iter; mod to_parser_input; #[cfg(test)] mod benchmark; mod token_map; use ::tt::token_id as tt; use std::fmt; use crate::{ parser::{MetaTemplate, MetaVarKind, Op}, tt_iter::TtIter, }; // FIXME: we probably should re-think `token_tree_to_syntax_node` interfaces pub use self::tt::{Delimiter, DelimiterKind, Punct}; pub use ::parser::TopEntryPoint; pub use crate::{ syntax_bridge::{ parse_exprs_with_sep, parse_to_token_tree, syntax_node_to_token_tree, syntax_node_to_token_tree_with_modifications, token_tree_to_syntax_node, SyntheticToken, SyntheticTokenId, }, token_map::TokenMap, }; #[derive(Debug, PartialEq, Eq, Clone)] pub enum ParseError { UnexpectedToken(Box), Expected(Box), InvalidRepeat, RepetitionEmptyTokenTree, } impl ParseError { fn expected(e: &str) -> ParseError { ParseError::Expected(e.into()) } fn unexpected(e: &str) -> ParseError { ParseError::UnexpectedToken(e.into()) } } impl fmt::Display for ParseError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ParseError::UnexpectedToken(it) => f.write_str(it), ParseError::Expected(it) => f.write_str(it), ParseError::InvalidRepeat => f.write_str("invalid repeat"), ParseError::RepetitionEmptyTokenTree => f.write_str("empty token tree in repetition"), } } } #[derive(Debug, PartialEq, Eq, Clone)] pub enum ExpandError { BindingError(Box>), LeftoverTokens, ConversionError, LimitExceeded, NoMatchingRule, UnexpectedToken, } impl ExpandError { fn binding_error(e: impl Into>) -> ExpandError { ExpandError::BindingError(Box::new(e.into())) } } impl fmt::Display for ExpandError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { ExpandError::NoMatchingRule => f.write_str("no rule matches input tokens"), ExpandError::UnexpectedToken => f.write_str("unexpected token in input"), ExpandError::BindingError(e) => f.write_str(e), ExpandError::ConversionError => f.write_str("could not convert tokens"), ExpandError::LimitExceeded => f.write_str("Expand exceed limit"), ExpandError::LeftoverTokens => f.write_str("leftover tokens"), } } } /// This struct contains AST for a single `macro_rules` definition. What might /// be very confusing is that AST has almost exactly the same shape as /// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident` /// and `$()*` have special meaning (see `Var` and `Repeat` data structures) #[derive(Clone, Debug, PartialEq, Eq)] pub struct DeclarativeMacro { rules: Vec, /// Highest id of the token we have in TokenMap shift: Shift, } #[derive(Clone, Debug, PartialEq, Eq)] struct Rule { lhs: MetaTemplate, rhs: MetaTemplate, } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Shift(u32); impl Shift { pub fn new(tt: &tt::Subtree) -> Shift { // Note that TokenId is started from zero, // We have to add 1 to prevent duplication. let value = max_id(tt).map_or(0, |it| it + 1); return Shift(value); // Find the max token id inside a subtree fn max_id(subtree: &tt::Subtree) -> Option { let filter = |tt: &_| match tt { tt::TokenTree::Subtree(subtree) => { let tree_id = max_id(subtree); if subtree.delimiter.open != tt::TokenId::unspecified() { Some(tree_id.map_or(subtree.delimiter.open.0, |t| { t.max(subtree.delimiter.open.0) })) } else { tree_id } } tt::TokenTree::Leaf(leaf) => { let &(tt::Leaf::Ident(tt::Ident { span, .. }) | tt::Leaf::Punct(tt::Punct { span, .. }) | tt::Leaf::Literal(tt::Literal { span, .. })) = leaf; (span != tt::TokenId::unspecified()).then_some(span.0) } }; subtree.token_trees.iter().filter_map(filter).max() } } /// Shift given TokenTree token id pub fn shift_all(self, tt: &mut tt::Subtree) { for t in &mut tt.token_trees { match t { tt::TokenTree::Leaf( tt::Leaf::Ident(tt::Ident { span, .. }) | tt::Leaf::Punct(tt::Punct { span, .. }) | tt::Leaf::Literal(tt::Literal { span, .. }), ) => *span = self.shift(*span), tt::TokenTree::Subtree(tt) => { tt.delimiter.open = self.shift(tt.delimiter.open); tt.delimiter.close = self.shift(tt.delimiter.close); self.shift_all(tt) } } } } pub fn shift(self, id: tt::TokenId) -> tt::TokenId { if id == tt::TokenId::unspecified() { id } else { tt::TokenId(id.0 + self.0) } } pub fn unshift(self, id: tt::TokenId) -> Option { id.0.checked_sub(self.0).map(tt::TokenId) } } #[derive(Debug, Eq, PartialEq)] pub enum Origin { Def, Call, } impl DeclarativeMacro { /// The old, `macro_rules! m {}` flavor. pub fn parse_macro_rules(tt: &tt::Subtree) -> Result { // Note: this parsing can be implemented using mbe machinery itself, by // matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing // manually seems easier. let mut src = TtIter::new(tt); let mut rules = Vec::new(); while src.len() > 0 { let rule = Rule::parse(&mut src, true)?; rules.push(rule); if let Err(()) = src.expect_char(';') { if src.len() > 0 { return Err(ParseError::expected("expected `;`")); } break; } } for Rule { lhs, .. } in &rules { validate(lhs)?; } Ok(DeclarativeMacro { rules, shift: Shift::new(tt) }) } /// The new, unstable `macro m {}` flavor. pub fn parse_macro2(tt: &tt::Subtree) -> Result { let mut src = TtIter::new(tt); let mut rules = Vec::new(); if tt::DelimiterKind::Brace == tt.delimiter.kind { cov_mark::hit!(parse_macro_def_rules); while src.len() > 0 { let rule = Rule::parse(&mut src, true)?; rules.push(rule); if let Err(()) = src.expect_any_char(&[';', ',']) { if src.len() > 0 { return Err(ParseError::expected("expected `;` or `,` to delimit rules")); } break; } } } else { cov_mark::hit!(parse_macro_def_simple); let rule = Rule::parse(&mut src, false)?; if src.len() != 0 { return Err(ParseError::expected("remaining tokens in macro def")); } rules.push(rule); } for Rule { lhs, .. } in &rules { validate(lhs)?; } Ok(DeclarativeMacro { rules, shift: Shift::new(tt) }) } pub fn expand(&self, tt: &tt::Subtree) -> ExpandResult { // apply shift let mut tt = tt.clone(); self.shift.shift_all(&mut tt); expander::expand_rules(&self.rules, &tt) } pub fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId { self.shift.shift(id) } pub fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, Origin) { match self.shift.unshift(id) { Some(id) => (id, Origin::Call), None => (id, Origin::Def), } } pub fn shift(&self) -> Shift { self.shift } } impl Rule { fn parse(src: &mut TtIter<'_>, expect_arrow: bool) -> Result { let lhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?; if expect_arrow { src.expect_char('=').map_err(|()| ParseError::expected("expected `=`"))?; src.expect_char('>').map_err(|()| ParseError::expected("expected `>`"))?; } let rhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?; let lhs = MetaTemplate::parse_pattern(lhs)?; let rhs = MetaTemplate::parse_template(rhs)?; Ok(crate::Rule { lhs, rhs }) } } fn validate(pattern: &MetaTemplate) -> Result<(), ParseError> { for op in pattern.iter() { match op { Op::Subtree { tokens, .. } => validate(tokens)?, Op::Repeat { tokens: subtree, separator, .. } => { // Checks that no repetition which could match an empty token // https://github.com/rust-lang/rust/blob/a58b1ed44f5e06976de2bdc4d7dc81c36a96934f/src/librustc_expand/mbe/macro_rules.rs#L558 let lsh_is_empty_seq = separator.is_none() && subtree.iter().all(|child_op| { match *child_op { // vis is optional Op::Var { kind: Some(kind), .. } => kind == MetaVarKind::Vis, Op::Repeat { kind: parser::RepeatKind::ZeroOrMore | parser::RepeatKind::ZeroOrOne, .. } => true, _ => false, } }); if lsh_is_empty_seq { return Err(ParseError::RepetitionEmptyTokenTree); } validate(subtree)? } _ => (), } } Ok(()) } pub type ExpandResult = ValueResult; #[derive(Debug, Clone, Eq, PartialEq)] pub struct ValueResult { pub value: T, pub err: Option, } impl ValueResult { pub fn ok(value: T) -> Self { Self { value, err: None } } pub fn with_err(value: T, err: E) -> Self { Self { value, err: Some(err) } } pub fn only_err(err: E) -> Self where T: Default, { Self { value: Default::default(), err: Some(err) } } pub fn map(self, f: impl FnOnce(T) -> U) -> ValueResult { ValueResult { value: f(self.value), err: self.err } } pub fn map_err(self, f: impl FnOnce(E) -> E2) -> ValueResult { ValueResult { value: self.value, err: self.err.map(f) } } pub fn result(self) -> Result { self.err.map_or(Ok(self.value), Err) } } impl From> for ValueResult { fn from(result: Result) -> Self { result.map_or_else(Self::only_err, Self::ok) } }