// run-pass // Test that users are able to use stable mir APIs to retrieve information of the current crate // ignore-stage1 // ignore-cross-compile // ignore-remote // edition: 2021 #![feature(rustc_private)] #![feature(assert_matches)] #![feature(control_flow_enum)] extern crate rustc_hir; extern crate rustc_middle; extern crate rustc_smir; extern crate stable_mir; use rustc_hir::def::DefKind; use rustc_middle::ty::TyCtxt; use rustc_smir::rustc_internal; use stable_mir::fold::Foldable; use std::assert_matches::assert_matches; use std::io::Write; use std::ops::ControlFlow; const CRATE_NAME: &str = "input"; /// This function uses the Stable MIR APIs to get information about the test crate. fn test_stable_mir(_tcx: TyCtxt<'_>) -> ControlFlow<()> { // Get the local crate using stable_mir API. let local = stable_mir::local_crate(); assert_eq!(&local.name, CRATE_NAME); assert_eq!(stable_mir::entry_fn(), None); // Find items in the local crate. let items = stable_mir::all_local_items(); assert!(get_item(&items, (DefKind::Fn, "foo::bar")).is_some()); // Find the `std` crate. assert!(stable_mir::find_crate("std").is_some()); let bar = get_item(&items, (DefKind::Fn, "bar")).unwrap(); let body = bar.body(); assert_eq!(body.locals.len(), 2); assert_eq!(body.blocks.len(), 1); let block = &body.blocks[0]; assert_eq!(block.statements.len(), 1); match &block.statements[0] { stable_mir::mir::Statement::Assign(..) => {} other => panic!("{other:?}"), } match &block.terminator { stable_mir::mir::Terminator::Return => {} other => panic!("{other:?}"), } let foo_bar = get_item(&items, (DefKind::Fn, "foo_bar")).unwrap(); let body = foo_bar.body(); assert_eq!(body.locals.len(), 7); assert_eq!(body.blocks.len(), 4); let block = &body.blocks[0]; match &block.terminator { stable_mir::mir::Terminator::Call { .. } => {} other => panic!("{other:?}"), } let types = get_item(&items, (DefKind::Fn, "types")).unwrap(); let body = types.body(); assert_eq!(body.locals.len(), 6); assert_matches!( body.locals[0].kind(), stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Bool) ); assert_matches!( body.locals[1].kind(), stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Bool) ); assert_matches!( body.locals[2].kind(), stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Char) ); assert_matches!( body.locals[3].kind(), stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Int(stable_mir::ty::IntTy::I32)) ); assert_matches!( body.locals[4].kind(), stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Uint(stable_mir::ty::UintTy::U64)) ); assert_matches!( body.locals[5].kind(), stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::Float( stable_mir::ty::FloatTy::F64 )) ); let drop = get_item(&items, (DefKind::Fn, "drop")).unwrap(); let body = drop.body(); assert_eq!(body.blocks.len(), 2); let block = &body.blocks[0]; match &block.terminator { stable_mir::mir::Terminator::Drop { .. } => {} other => panic!("{other:?}"), } let assert = get_item(&items, (DefKind::Fn, "assert")).unwrap(); let body = assert.body(); assert_eq!(body.blocks.len(), 2); let block = &body.blocks[0]; match &block.terminator { stable_mir::mir::Terminator::Assert { .. } => {} other => panic!("{other:?}"), } let monomorphic = get_item(&items, (DefKind::Fn, "monomorphic")).unwrap(); for block in monomorphic.body().blocks { match &block.terminator { stable_mir::mir::Terminator::Call { func, .. } => match func { stable_mir::mir::Operand::Constant(c) => match &c.literal.literal { stable_mir::ty::ConstantKind::Allocated(alloc) => { assert!(alloc.bytes.is_empty()); match c.literal.ty.kind() { stable_mir::ty::TyKind::RigidTy(stable_mir::ty::RigidTy::FnDef( def, mut args, )) => { let func = def.body(); match func.locals[1] .fold(&mut args) .continue_value() .unwrap() .kind() { stable_mir::ty::TyKind::RigidTy( stable_mir::ty::RigidTy::Uint(_), ) => {} stable_mir::ty::TyKind::RigidTy( stable_mir::ty::RigidTy::Tuple(_), ) => {} other => panic!("{other:?}"), } } other => panic!("{other:?}"), } } other => panic!("{other:?}"), }, other => panic!("{other:?}"), }, stable_mir::mir::Terminator::Return => {} other => panic!("{other:?}"), } } let foo_const = get_item(&items, (DefKind::Const, "FOO")).unwrap(); // Ensure we don't panic trying to get the body of a constant. foo_const.body(); ControlFlow::Continue(()) } // Use internal API to find a function in a crate. fn get_item<'a>( items: &'a stable_mir::CrateItems, item: (DefKind, &str), ) -> Option<&'a stable_mir::CrateItem> { items.iter().find(|crate_item| { crate_item.kind().to_string() == format!("{:?}", item.0) && crate_item.name() == item.1 }) } /// This test will generate and analyze a dummy crate using the stable mir. /// For that, it will first write the dummy crate into a file. /// Then it will create a `StableMir` using custom arguments and then /// it will run the compiler. fn main() { let path = "input.rs"; generate_input(&path).unwrap(); let args = vec![ "rustc".to_string(), "--crate-type=lib".to_string(), "--crate-name".to_string(), CRATE_NAME.to_string(), path.to_string(), ]; rustc_internal::StableMir::new(args, test_stable_mir).run().unwrap(); } fn generate_input(path: &str) -> std::io::Result<()> { let mut file = std::fs::File::create(path)?; write!( file, r#" pub const FOO: u32 = 1 + 2; fn generic(t: T) -> [(); U] {{ _ = t; [(); U] }} pub fn monomorphic() {{ generic::<(), 5>(()); generic::(45); }} mod foo {{ pub fn bar(i: i32) -> i64 {{ i as i64 }} }} pub fn bar(x: i32) -> i32 {{ x }} pub fn foo_bar(x: i32, y: i32) -> i64 {{ let x_64 = foo::bar(x); let y_64 = foo::bar(y); x_64.wrapping_add(y_64) }} pub fn types(b: bool, _: char, _: i32, _: u64, _: f64) -> bool {{ b }} pub fn drop(_: String) {{}} pub fn assert(x: i32) -> i32 {{ x + 1 }}"# )?; Ok(()) }