#![feature(dropck_eyepatch)] // The point of this test is to illustrate that the `#[may_dangle]` // attribute specifically allows, in the context of a type // implementing `Drop`, a generic parameter to be instantiated with a // lifetime that does not strictly outlive the owning type itself. // // Here we test that only the expected errors are issued. // // The illustration is made concrete by comparison with two variations // on the type with `#[may_dangle]`: // // 1. an analogous type that does not implement `Drop` (and thus // should exhibit maximal flexibility with respect to dropck), and // // 2. an analogous type that does not use `#[may_dangle]` (and thus // should exhibit the standard limitations imposed by dropck. // // The types in this file follow a pattern, {D,P,S}{t,r}, where: // // - D means "I implement Drop" // // - P means "I implement Drop but guarantee my (first) parameter is // pure, i.e., not accessed from the destructor"; no other parameters // are pure. // // - S means "I do not implement Drop" // // - t suffix is used when the first generic is a type // // - r suffix is used when the first generic is a lifetime. use std::fmt; struct Dt(&'static str, A); struct Dr<'a, B:'a+fmt::Debug>(&'static str, &'a B); struct Pt(&'static str, A, B); struct Pr<'a, 'b, B:'a+'b+fmt::Debug>(&'static str, &'a B, &'b B); struct St(&'static str, A); struct Sr<'a, B:'a+fmt::Debug>(&'static str, &'a B); impl Drop for Dt { fn drop(&mut self) { println!("drop {} {:?}", self.0, self.1); } } impl<'a, B: fmt::Debug> Drop for Dr<'a, B> { fn drop(&mut self) { println!("drop {} {:?}", self.0, self.1); } } unsafe impl<#[may_dangle] A, B: fmt::Debug> Drop for Pt { // (unsafe to access self.1 due to #[may_dangle] on A) fn drop(&mut self) { println!("drop {} {:?}", self.0, self.2); } } unsafe impl<#[may_dangle] 'a, 'b, B: fmt::Debug> Drop for Pr<'a, 'b, B> { // (unsafe to access self.1 due to #[may_dangle] on 'a) fn drop(&mut self) { println!("drop {} {:?}", self.0, self.2); } } fn main() { use std::cell::Cell; // We use separate blocks with separate variable to prevent the error // messages from being deduplicated. { let c_long; let (mut dt, mut dr): (Dt<_>, Dr<_>); c_long = Cell::new(1); // No error: sufficiently long-lived state can be referenced in dtors dt = Dt("dt", &c_long); dr = Dr("dr", &c_long); } { let (c, mut dt, mut dr): (Cell<_>, Dt<_>, Dr<_>); c = Cell::new(1); // No Error: destructor order precisely modelled dt = Dt("dt", &c); dr = Dr("dr", &c); } { let (mut dt, mut dr, c_shortest): (Dt<_>, Dr<_>, Cell<_>); c_shortest = Cell::new(1); // Error: `c_shortest` dies too soon for the references in dtors to be valid. dt = Dt("dt", &c_shortest); //~^ ERROR `c_shortest` does not live long enough dr = Dr("dr", &c_shortest); } { let c_long; let (mut pt, mut pr, c_shortest): (Pt<_, _>, Pr<_>, Cell<_>); c_long = Cell::new(1); c_shortest = Cell::new(1); // No error: Drop impl asserts .1 (A and &'a _) are not accessed pt = Pt("pt", &c_shortest, &c_long); pr = Pr("pr", &c_shortest, &c_long); } { let c_long; let (mut pt, mut pr, c_shortest): (Pt<_, _>, Pr<_>, Cell<_>); c_long = Cell::new(1); c_shortest = Cell::new(1); // Error: Drop impl's assertion does not apply to `B` nor `&'b _` pt = Pt("pt", &c_long, &c_shortest); //~^ ERROR `c_shortest` does not live long enough pr = Pr("pr", &c_long, &c_shortest); } { let (st, sr, c_shortest): (St<_>, Sr<_>, Cell<_>); c_shortest = Cell::new(1); // No error: St and Sr have no destructor. st = St("st", &c_shortest); sr = Sr("sr", &c_shortest); } } fn use_imm(_: &T) { }