use crate::{ alloc::{Allocator, Global}, vec::Vec, }; /// Slice methods that use `Box` and `Vec` from this crate. pub trait SliceExt { /// Copies `self` into a new `Vec`. /// /// # Examples /// /// ``` /// let s = [10, 40, 30]; /// let x = s.to_vec(); /// // Here, `s` and `x` can be modified independently. /// ``` #[cfg(not(no_global_oom_handling))] #[inline(always)] fn to_vec(&self) -> Vec where T: Clone, { self.to_vec_in(Global) } /// Copies `self` into a new `Vec` with an allocator. /// /// # Examples /// /// ``` /// #![feature(allocator_api)] /// /// use std::alloc::System; /// /// let s = [10, 40, 30]; /// let x = s.to_vec_in(System); /// // Here, `s` and `x` can be modified independently. /// ``` #[cfg(not(no_global_oom_handling))] fn to_vec_in(&self, alloc: A) -> Vec where T: Clone; /// Creates a vector by copying a slice `n` times. /// /// # Panics /// /// This function will panic if the capacity would overflow. /// /// # Examples /// /// Basic usage: /// /// ``` /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); /// ``` /// /// A panic upon overflow: /// /// ```should_panic /// // this will panic at runtime /// b"0123456789abcdef".repeat(usize::MAX); /// ``` fn repeat(&self, n: usize) -> Vec where T: Copy; } impl SliceExt for [T] { #[cfg(not(no_global_oom_handling))] #[inline] fn to_vec_in(&self, alloc: A) -> Vec where T: Clone, { struct DropGuard<'a, T, A: Allocator> { vec: &'a mut Vec, num_init: usize, } impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { #[inline] fn drop(&mut self) { // SAFETY: // items were marked initialized in the loop below unsafe { self.vec.set_len(self.num_init); } } } let mut vec = Vec::with_capacity_in(self.len(), alloc); let mut guard = DropGuard { vec: &mut vec, num_init: 0, }; let slots = guard.vec.spare_capacity_mut(); // .take(slots.len()) is necessary for LLVM to remove bounds checks // and has better codegen than zip. for (i, b) in self.iter().enumerate().take(slots.len()) { guard.num_init = i; slots[i].write(b.clone()); } core::mem::forget(guard); // SAFETY: // the vec was allocated and initialized above to at least this length. unsafe { vec.set_len(self.len()); } vec } #[cfg(not(no_global_oom_handling))] #[inline] fn repeat(&self, n: usize) -> Vec where T: Copy, { if n == 0 { return Vec::new(); } // If `n` is larger than zero, it can be split as // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. // `2^expn` is the number represented by the leftmost '1' bit of `n`, // and `rem` is the remaining part of `n`. // Using `Vec` to access `set_len()`. let capacity = self.len().checked_mul(n).expect("capacity overflow"); let mut buf = Vec::with_capacity(capacity); // `2^expn` repetition is done by doubling `buf` `expn`-times. buf.extend(self); { let mut m = n >> 1; // If `m > 0`, there are remaining bits up to the leftmost '1'. while m > 0 { // `buf.extend(buf)`: unsafe { core::ptr::copy_nonoverlapping( buf.as_ptr(), (buf.as_mut_ptr() as *mut T).add(buf.len()), buf.len(), ); // `buf` has capacity of `self.len() * n`. let buf_len = buf.len(); buf.set_len(buf_len * 2); } m >>= 1; } } // `rem` (`= n - 2^expn`) repetition is done by copying // first `rem` repetitions from `buf` itself. let rem_len = capacity - buf.len(); // `self.len() * rem` if rem_len > 0 { // `buf.extend(buf[0 .. rem_len])`: unsafe { // This is non-overlapping since `2^expn > rem`. core::ptr::copy_nonoverlapping( buf.as_ptr(), (buf.as_mut_ptr() as *mut T).add(buf.len()), rem_len, ); // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). buf.set_len(capacity); } } buf } }