use crate::debug_span; use chalk_ir::fold::{Fold, Folder}; use chalk_ir::interner::{HasInterner, Interner}; use chalk_ir::visit::{Visit, Visitor}; use chalk_ir::*; use std::ops::ControlFlow; use super::InferenceTable; impl InferenceTable { pub fn u_canonicalize(interner: I, value0: &Canonical) -> UCanonicalized where T: Clone + HasInterner + Fold + Visit, T::Result: HasInterner, { debug_span!("u_canonicalize", "{:#?}", value0); // First, find all the universes that appear in `value`. let mut universes = UniverseMap::new(); for universe in value0.binders.iter(interner) { universes.add(*universe.skip_kind()); } value0.value.visit_with( &mut UCollector { universes: &mut universes, interner, }, DebruijnIndex::INNERMOST, ); // Now re-map the universes found in value. We have to do this // in a second pass because it is only then that we know the // full set of universes found in the original value. let value1 = value0 .value .clone() .fold_with( &mut UMapToCanonical { universes: &universes, interner, }, DebruijnIndex::INNERMOST, ) .unwrap(); let binders = CanonicalVarKinds::from_iter( interner, value0 .binders .iter(interner) .map(|pk| pk.map_ref(|&ui| universes.map_universe_to_canonical(ui).unwrap())), ); UCanonicalized { quantified: UCanonical { universes: universes.num_canonical_universes(), canonical: Canonical { value: value1, binders, }, }, universes, } } } #[derive(Debug)] pub struct UCanonicalized { /// The canonicalized result. pub quantified: UCanonical, /// A map between the universes in `quantified` and the original universes pub universes: UniverseMap, } pub trait UniverseMapExt { fn add(&mut self, universe: UniverseIndex); fn map_universe_to_canonical(&self, universe: UniverseIndex) -> Option; fn map_universe_from_canonical(&self, universe: UniverseIndex) -> UniverseIndex; fn map_from_canonical( &self, interner: I, canonical_value: &Canonical, ) -> Canonical where T: Clone + Fold + HasInterner, T::Result: HasInterner, I: Interner; } impl UniverseMapExt for UniverseMap { fn add(&mut self, universe: UniverseIndex) { if let Err(i) = self.universes.binary_search(&universe) { self.universes.insert(i, universe); } } /// Given a universe U that appeared in our original value, return /// the universe to use in the u-canonical value. This is done by /// looking for the index I of U in `self.universes`. We will /// return the universe with "counter" I. This effectively /// "compresses" the range of universes to things from /// `0..self.universes.len()`. If the universe is not present in the map, /// we return `None`. fn map_universe_to_canonical(&self, universe: UniverseIndex) -> Option { self.universes .binary_search(&universe) .ok() .map(|index| UniverseIndex { counter: index }) } /// Given a "canonical universe" -- one found in the /// `u_canonicalize` result -- returns the original universe that /// it corresponded to. fn map_universe_from_canonical(&self, universe: UniverseIndex) -> UniverseIndex { if universe.counter < self.universes.len() { self.universes[universe.counter] } else { // If this universe is out of bounds, we assume an // implicit `forall` binder, effectively, and map to a // "big enough" universe in the original space. See // comments on `map_from_canonical` for a detailed // explanation. let difference = universe.counter - self.universes.len(); let max_counter = self.universes.last().unwrap().counter; let new_counter = max_counter + difference + 1; UniverseIndex { counter: new_counter, } } } /// Returns a mapped version of `value` where the universes have /// been translated from canonical universes into the original /// universes. /// /// In some cases, `value` may contain fresh universes that are /// not described in the original map. This occurs when we return /// region constraints -- for example, if we were to process a /// constraint like `for<'a> 'a == 'b`, where `'b` is an inference /// variable, that would generate a region constraint that `!2 == /// ?0`. (This constraint is typically not, as it happens, /// satisfiable, but it may be, depending on the bounds on `!2`.) /// In effect, there is a "for all" binder around the constraint, /// but it is not represented explicitly -- only implicitly, by /// the presence of a U2 variable. /// /// If we encounter universes like this, which are "out of bounds" /// from our original set of universes, we map them to a distinct /// universe in the original space that is greater than all the /// other universes in the map. That is, if we encounter a /// canonical universe `Ux` where our canonical vector is (say) /// `[U0, U3]`, we would compute the difference `d = x - 2` and /// then return the universe `3 + d + 1`. /// /// The important thing is that we preserve (a) the relative order /// of universes, since that determines visibility, and (b) that /// the universe we produce does not correspond to any of the /// other original universes. fn map_from_canonical( &self, interner: I, canonical_value: &Canonical, ) -> Canonical where T: Clone + Fold + HasInterner, T::Result: HasInterner, I: Interner, { debug_span!("map_from_canonical", ?canonical_value, universes = ?self.universes); let binders = canonical_value .binders .iter(interner) .map(|cvk| cvk.map_ref(|&universe| self.map_universe_from_canonical(universe))); let value = canonical_value .value .clone() .fold_with( &mut UMapFromCanonical { interner, universes: self, }, DebruijnIndex::INNERMOST, ) .unwrap(); Canonical { binders: CanonicalVarKinds::from_iter(interner, binders), value, } } } /// The `UCollector` is a "no-op" in terms of the value, but along the /// way it collects all universes that were found into a vector. struct UCollector<'q, I> { universes: &'q mut UniverseMap, interner: I, } impl Visitor for UCollector<'_, I> { type BreakTy = (); fn as_dyn(&mut self) -> &mut dyn Visitor { self } fn visit_free_placeholder( &mut self, universe: PlaceholderIndex, _outer_binder: DebruijnIndex, ) -> ControlFlow<()> { self.universes.add(universe.ui); ControlFlow::Continue(()) } fn forbid_inference_vars(&self) -> bool { true } fn interner(&self) -> I { self.interner } } struct UMapToCanonical<'q, I> { interner: I, universes: &'q UniverseMap, } impl<'i, I: Interner> Folder for UMapToCanonical<'i, I> { type Error = NoSolution; fn as_dyn(&mut self) -> &mut dyn Folder { self } fn forbid_inference_vars(&self) -> bool { true } fn fold_free_placeholder_ty( &mut self, universe0: PlaceholderIndex, _outer_binder: DebruijnIndex, ) -> Fallible> { let ui = self .universes .map_universe_to_canonical(universe0.ui) .expect("Expected UCollector to encounter this universe"); Ok(PlaceholderIndex { ui, idx: universe0.idx, } .to_ty(self.interner())) } fn fold_free_placeholder_lifetime( &mut self, universe0: PlaceholderIndex, _outer_binder: DebruijnIndex, ) -> Fallible> { let universe = self .universes .map_universe_to_canonical(universe0.ui) .expect("Expected UCollector to encounter this universe"); Ok(PlaceholderIndex { ui: universe, idx: universe0.idx, } .to_lifetime(self.interner())) } fn fold_free_placeholder_const( &mut self, ty: Ty, universe0: PlaceholderIndex, _outer_binder: DebruijnIndex, ) -> Fallible> { let universe = self .universes .map_universe_to_canonical(universe0.ui) .expect("Expected UCollector to encounter this universe"); Ok(PlaceholderIndex { ui: universe, idx: universe0.idx, } .to_const(self.interner(), ty)) } fn interner(&self) -> I { self.interner } } struct UMapFromCanonical<'q, I> { interner: I, universes: &'q UniverseMap, } impl<'i, I: Interner> Folder for UMapFromCanonical<'i, I> { type Error = NoSolution; fn as_dyn(&mut self) -> &mut dyn Folder { self } fn fold_free_placeholder_ty( &mut self, universe0: PlaceholderIndex, _outer_binder: DebruijnIndex, ) -> Fallible> { let ui = self.universes.map_universe_from_canonical(universe0.ui); Ok(PlaceholderIndex { ui, idx: universe0.idx, } .to_ty(self.interner())) } fn fold_free_placeholder_lifetime( &mut self, universe0: PlaceholderIndex, _outer_binder: DebruijnIndex, ) -> Fallible> { let universe = self.universes.map_universe_from_canonical(universe0.ui); Ok(PlaceholderIndex { ui: universe, idx: universe0.idx, } .to_lifetime(self.interner())) } fn forbid_inference_vars(&self) -> bool { true } fn interner(&self) -> I { self.interner } }