// This is a part of Chrono. // See README.md and LICENSE.txt for details. //! A collection of parsed date and time items. //! They can be constructed incrementally while being checked for consistency. use super::{ParseResult, IMPOSSIBLE, NOT_ENOUGH, OUT_OF_RANGE}; use crate::naive::{NaiveDate, NaiveDateTime, NaiveTime}; use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone}; use crate::oldtime::Duration as OldDuration; use crate::DateTime; use crate::Weekday; use crate::{Datelike, Timelike}; /// Parsed parts of date and time. There are two classes of methods: /// /// - `set_*` methods try to set given field(s) while checking for the consistency. /// It may or may not check for the range constraint immediately (for efficiency reasons). /// /// - `to_*` methods try to make a concrete date and time value out of set fields. /// It fully checks any remaining out-of-range conditions and inconsistent/impossible fields. #[allow(clippy::manual_non_exhaustive)] #[derive(Clone, PartialEq, Eq, Debug, Default, Hash)] pub struct Parsed { /// Year. /// /// This can be negative unlike [`year_div_100`](#structfield.year_div_100) /// and [`year_mod_100`](#structfield.year_mod_100) fields. pub year: Option, /// Year divided by 100. Implies that the year is >= 1 BCE when set. /// /// Due to the common usage, if this field is missing but /// [`year_mod_100`](#structfield.year_mod_100) is present, /// it is inferred to 19 when `year_mod_100 >= 70` and 20 otherwise. pub year_div_100: Option, /// Year modulo 100. Implies that the year is >= 1 BCE when set. pub year_mod_100: Option, /// Year in the [ISO week date](../naive/struct.NaiveDate.html#week-date). /// /// This can be negative unlike [`isoyear_div_100`](#structfield.isoyear_div_100) and /// [`isoyear_mod_100`](#structfield.isoyear_mod_100) fields. pub isoyear: Option, /// Year in the [ISO week date](../naive/struct.NaiveDate.html#week-date), divided by 100. /// Implies that the year is >= 1 BCE when set. /// /// Due to the common usage, if this field is missing but /// [`isoyear_mod_100`](#structfield.isoyear_mod_100) is present, /// it is inferred to 19 when `isoyear_mod_100 >= 70` and 20 otherwise. pub isoyear_div_100: Option, /// Year in the [ISO week date](../naive/struct.NaiveDate.html#week-date), modulo 100. /// Implies that the year is >= 1 BCE when set. pub isoyear_mod_100: Option, /// Month (1--12). pub month: Option, /// Week number, where the week 1 starts at the first Sunday of January /// (0--53, 1--53 or 1--52 depending on the year). pub week_from_sun: Option, /// Week number, where the week 1 starts at the first Monday of January /// (0--53, 1--53 or 1--52 depending on the year). pub week_from_mon: Option, /// [ISO week number](../naive/struct.NaiveDate.html#week-date) /// (1--52 or 1--53 depending on the year). pub isoweek: Option, /// Day of the week. pub weekday: Option, /// Day of the year (1--365 or 1--366 depending on the year). pub ordinal: Option, /// Day of the month (1--28, 1--29, 1--30 or 1--31 depending on the month). pub day: Option, /// Hour number divided by 12 (0--1). 0 indicates AM and 1 indicates PM. pub hour_div_12: Option, /// Hour number modulo 12 (0--11). pub hour_mod_12: Option, /// Minute number (0--59). pub minute: Option, /// Second number (0--60, accounting for leap seconds). pub second: Option, /// The number of nanoseconds since the whole second (0--999,999,999). pub nanosecond: Option, /// The number of non-leap seconds since the midnight UTC on January 1, 1970. /// /// This can be off by one if [`second`](#structfield.second) is 60 (a leap second). pub timestamp: Option, /// Offset from the local time to UTC, in seconds. pub offset: Option, /// A dummy field to make this type not fully destructible (required for API stability). // TODO: Change this to `#[non_exhaustive]` (on the enum) with the next breaking release. _dummy: (), } /// Checks if `old` is either empty or has the same value as `new` (i.e. "consistent"), /// and if it is empty, set `old` to `new` as well. #[inline] fn set_if_consistent(old: &mut Option, new: T) -> ParseResult<()> { if let Some(ref old) = *old { if *old == new { Ok(()) } else { Err(IMPOSSIBLE) } } else { *old = Some(new); Ok(()) } } impl Parsed { /// Returns the initial value of parsed parts. #[must_use] pub fn new() -> Parsed { Parsed::default() } /// Tries to set the [`year`](#structfield.year) field from given value. #[inline] pub fn set_year(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.year, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`year_div_100`](#structfield.year_div_100) field from given value. #[inline] pub fn set_year_div_100(&mut self, value: i64) -> ParseResult<()> { if value < 0 { return Err(OUT_OF_RANGE); } set_if_consistent(&mut self.year_div_100, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`year_mod_100`](#structfield.year_mod_100) field from given value. #[inline] pub fn set_year_mod_100(&mut self, value: i64) -> ParseResult<()> { if value < 0 { return Err(OUT_OF_RANGE); } set_if_consistent(&mut self.year_mod_100, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`isoyear`](#structfield.isoyear) field from given value. #[inline] pub fn set_isoyear(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.isoyear, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`isoyear_div_100`](#structfield.isoyear_div_100) field from given value. #[inline] pub fn set_isoyear_div_100(&mut self, value: i64) -> ParseResult<()> { if value < 0 { return Err(OUT_OF_RANGE); } set_if_consistent( &mut self.isoyear_div_100, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?, ) } /// Tries to set the [`isoyear_mod_100`](#structfield.isoyear_mod_100) field from given value. #[inline] pub fn set_isoyear_mod_100(&mut self, value: i64) -> ParseResult<()> { if value < 0 { return Err(OUT_OF_RANGE); } set_if_consistent( &mut self.isoyear_mod_100, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?, ) } /// Tries to set the [`month`](#structfield.month) field from given value. #[inline] pub fn set_month(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.month, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`week_from_sun`](#structfield.week_from_sun) field from given value. #[inline] pub fn set_week_from_sun(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.week_from_sun, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`week_from_mon`](#structfield.week_from_mon) field from given value. #[inline] pub fn set_week_from_mon(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.week_from_mon, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`isoweek`](#structfield.isoweek) field from given value. #[inline] pub fn set_isoweek(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.isoweek, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`weekday`](#structfield.weekday) field from given value. #[inline] pub fn set_weekday(&mut self, value: Weekday) -> ParseResult<()> { set_if_consistent(&mut self.weekday, value) } /// Tries to set the [`ordinal`](#structfield.ordinal) field from given value. #[inline] pub fn set_ordinal(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.ordinal, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`day`](#structfield.day) field from given value. #[inline] pub fn set_day(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.day, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`hour_div_12`](#structfield.hour_div_12) field from given value. /// (`false` for AM, `true` for PM) #[inline] pub fn set_ampm(&mut self, value: bool) -> ParseResult<()> { set_if_consistent(&mut self.hour_div_12, u32::from(value)) } /// Tries to set the [`hour_mod_12`](#structfield.hour_mod_12) field from /// given hour number in 12-hour clocks. #[inline] pub fn set_hour12(&mut self, value: i64) -> ParseResult<()> { if !(1..=12).contains(&value) { return Err(OUT_OF_RANGE); } set_if_consistent(&mut self.hour_mod_12, value as u32 % 12) } /// Tries to set both [`hour_div_12`](#structfield.hour_div_12) and /// [`hour_mod_12`](#structfield.hour_mod_12) fields from given value. #[inline] pub fn set_hour(&mut self, value: i64) -> ParseResult<()> { let v = u32::try_from(value).map_err(|_| OUT_OF_RANGE)?; set_if_consistent(&mut self.hour_div_12, v / 12)?; set_if_consistent(&mut self.hour_mod_12, v % 12)?; Ok(()) } /// Tries to set the [`minute`](#structfield.minute) field from given value. #[inline] pub fn set_minute(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.minute, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`second`](#structfield.second) field from given value. #[inline] pub fn set_second(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.second, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`nanosecond`](#structfield.nanosecond) field from given value. #[inline] pub fn set_nanosecond(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.nanosecond, u32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Tries to set the [`timestamp`](#structfield.timestamp) field from given value. #[inline] pub fn set_timestamp(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.timestamp, value) } /// Tries to set the [`offset`](#structfield.offset) field from given value. #[inline] pub fn set_offset(&mut self, value: i64) -> ParseResult<()> { set_if_consistent(&mut self.offset, i32::try_from(value).map_err(|_| OUT_OF_RANGE)?) } /// Returns a parsed naive date out of given fields. /// /// This method is able to determine the date from given subset of fields: /// /// - Year, month, day. /// - Year, day of the year (ordinal). /// - Year, week number counted from Sunday or Monday, day of the week. /// - ISO week date. /// /// Gregorian year and ISO week date year can have their century number (`*_div_100`) omitted, /// the two-digit year is used to guess the century number then. pub fn to_naive_date(&self) -> ParseResult { fn resolve_year( y: Option, q: Option, r: Option, ) -> ParseResult> { match (y, q, r) { // if there is no further information, simply return the given full year. // this is a common case, so let's avoid division here. (y, None, None) => Ok(y), // if there is a full year *and* also quotient and/or modulo, // check if present quotient and/or modulo is consistent to the full year. // since the presence of those fields means a positive full year, // we should filter a negative full year first. (Some(y), q, r @ Some(0..=99)) | (Some(y), q, r @ None) => { if y < 0 { return Err(OUT_OF_RANGE); } let q_ = y / 100; let r_ = y % 100; if q.unwrap_or(q_) == q_ && r.unwrap_or(r_) == r_ { Ok(Some(y)) } else { Err(IMPOSSIBLE) } } // the full year is missing but we have quotient and modulo. // reconstruct the full year. make sure that the result is always positive. (None, Some(q), Some(r @ 0..=99)) => { if q < 0 { return Err(OUT_OF_RANGE); } let y = q.checked_mul(100).and_then(|v| v.checked_add(r)); Ok(Some(y.ok_or(OUT_OF_RANGE)?)) } // we only have modulo. try to interpret a modulo as a conventional two-digit year. // note: we are affected by Rust issue #18060. avoid multiple range patterns. (None, None, Some(r @ 0..=99)) => Ok(Some(r + if r < 70 { 2000 } else { 1900 })), // otherwise it is an out-of-bound or insufficient condition. (None, Some(_), None) => Err(NOT_ENOUGH), (_, _, Some(_)) => Err(OUT_OF_RANGE), } } let given_year = resolve_year(self.year, self.year_div_100, self.year_mod_100)?; let given_isoyear = resolve_year(self.isoyear, self.isoyear_div_100, self.isoyear_mod_100)?; // verify the normal year-month-day date. let verify_ymd = |date: NaiveDate| { let year = date.year(); let (year_div_100, year_mod_100) = if year >= 0 { (Some(year / 100), Some(year % 100)) } else { (None, None) // they should be empty to be consistent }; let month = date.month(); let day = date.day(); self.year.unwrap_or(year) == year && self.year_div_100.or(year_div_100) == year_div_100 && self.year_mod_100.or(year_mod_100) == year_mod_100 && self.month.unwrap_or(month) == month && self.day.unwrap_or(day) == day }; // verify the ISO week date. let verify_isoweekdate = |date: NaiveDate| { let week = date.iso_week(); let isoyear = week.year(); let isoweek = week.week(); let weekday = date.weekday(); let (isoyear_div_100, isoyear_mod_100) = if isoyear >= 0 { (Some(isoyear / 100), Some(isoyear % 100)) } else { (None, None) // they should be empty to be consistent }; self.isoyear.unwrap_or(isoyear) == isoyear && self.isoyear_div_100.or(isoyear_div_100) == isoyear_div_100 && self.isoyear_mod_100.or(isoyear_mod_100) == isoyear_mod_100 && self.isoweek.unwrap_or(isoweek) == isoweek && self.weekday.unwrap_or(weekday) == weekday }; // verify the ordinal and other (non-ISO) week dates. let verify_ordinal = |date: NaiveDate| { let ordinal = date.ordinal(); let week_from_sun = date.weeks_from(Weekday::Sun); let week_from_mon = date.weeks_from(Weekday::Mon); self.ordinal.unwrap_or(ordinal) == ordinal && self.week_from_sun.map_or(week_from_sun, |v| v as i32) == week_from_sun && self.week_from_mon.map_or(week_from_mon, |v| v as i32) == week_from_mon }; // test several possibilities. // tries to construct a full `NaiveDate` as much as possible, then verifies that // it is consistent with other given fields. let (verified, parsed_date) = match (given_year, given_isoyear, self) { (Some(year), _, &Parsed { month: Some(month), day: Some(day), .. }) => { // year, month, day let date = NaiveDate::from_ymd_opt(year, month, day).ok_or(OUT_OF_RANGE)?; (verify_isoweekdate(date) && verify_ordinal(date), date) } (Some(year), _, &Parsed { ordinal: Some(ordinal), .. }) => { // year, day of the year let date = NaiveDate::from_yo_opt(year, ordinal).ok_or(OUT_OF_RANGE)?; (verify_ymd(date) && verify_isoweekdate(date) && verify_ordinal(date), date) } ( Some(year), _, &Parsed { week_from_sun: Some(week_from_sun), weekday: Some(weekday), .. }, ) => { // year, week (starting at 1st Sunday), day of the week let newyear = NaiveDate::from_yo_opt(year, 1).ok_or(OUT_OF_RANGE)?; let firstweek = match newyear.weekday() { Weekday::Sun => 0, Weekday::Mon => 6, Weekday::Tue => 5, Weekday::Wed => 4, Weekday::Thu => 3, Weekday::Fri => 2, Weekday::Sat => 1, }; // `firstweek+1`-th day of January is the beginning of the week 1. if week_from_sun > 53 { return Err(OUT_OF_RANGE); } // can it overflow? let ndays = firstweek + (week_from_sun as i32 - 1) * 7 + weekday.num_days_from_sunday() as i32; let date = newyear .checked_add_signed(OldDuration::days(i64::from(ndays))) .ok_or(OUT_OF_RANGE)?; if date.year() != year { return Err(OUT_OF_RANGE); } // early exit for correct error (verify_ymd(date) && verify_isoweekdate(date) && verify_ordinal(date), date) } ( Some(year), _, &Parsed { week_from_mon: Some(week_from_mon), weekday: Some(weekday), .. }, ) => { // year, week (starting at 1st Monday), day of the week let newyear = NaiveDate::from_yo_opt(year, 1).ok_or(OUT_OF_RANGE)?; let firstweek = match newyear.weekday() { Weekday::Sun => 1, Weekday::Mon => 0, Weekday::Tue => 6, Weekday::Wed => 5, Weekday::Thu => 4, Weekday::Fri => 3, Weekday::Sat => 2, }; // `firstweek+1`-th day of January is the beginning of the week 1. if week_from_mon > 53 { return Err(OUT_OF_RANGE); } // can it overflow? let ndays = firstweek + (week_from_mon as i32 - 1) * 7 + weekday.num_days_from_monday() as i32; let date = newyear .checked_add_signed(OldDuration::days(i64::from(ndays))) .ok_or(OUT_OF_RANGE)?; if date.year() != year { return Err(OUT_OF_RANGE); } // early exit for correct error (verify_ymd(date) && verify_isoweekdate(date) && verify_ordinal(date), date) } (_, Some(isoyear), &Parsed { isoweek: Some(isoweek), weekday: Some(weekday), .. }) => { // ISO year, week, day of the week let date = NaiveDate::from_isoywd_opt(isoyear, isoweek, weekday); let date = date.ok_or(OUT_OF_RANGE)?; (verify_ymd(date) && verify_ordinal(date), date) } (_, _, _) => return Err(NOT_ENOUGH), }; if verified { Ok(parsed_date) } else { Err(IMPOSSIBLE) } } /// Returns a parsed naive time out of given fields. /// /// This method is able to determine the time from given subset of fields: /// /// - Hour, minute. (second and nanosecond assumed to be 0) /// - Hour, minute, second. (nanosecond assumed to be 0) /// - Hour, minute, second, nanosecond. /// /// It is able to handle leap seconds when given second is 60. pub fn to_naive_time(&self) -> ParseResult { let hour_div_12 = match self.hour_div_12 { Some(v @ 0..=1) => v, Some(_) => return Err(OUT_OF_RANGE), None => return Err(NOT_ENOUGH), }; let hour_mod_12 = match self.hour_mod_12 { Some(v @ 0..=11) => v, Some(_) => return Err(OUT_OF_RANGE), None => return Err(NOT_ENOUGH), }; let hour = hour_div_12 * 12 + hour_mod_12; let minute = match self.minute { Some(v @ 0..=59) => v, Some(_) => return Err(OUT_OF_RANGE), None => return Err(NOT_ENOUGH), }; // we allow omitting seconds or nanoseconds, but they should be in the range. let (second, mut nano) = match self.second.unwrap_or(0) { v @ 0..=59 => (v, 0), 60 => (59, 1_000_000_000), _ => return Err(OUT_OF_RANGE), }; nano += match self.nanosecond { Some(v @ 0..=999_999_999) if self.second.is_some() => v, Some(0..=999_999_999) => return Err(NOT_ENOUGH), // second is missing Some(_) => return Err(OUT_OF_RANGE), None => 0, }; NaiveTime::from_hms_nano_opt(hour, minute, second, nano).ok_or(OUT_OF_RANGE) } /// Returns a parsed naive date and time out of given fields, /// except for the [`offset`](#structfield.offset) field (assumed to have a given value). /// This is required for parsing a local time or other known-timezone inputs. /// /// This method is able to determine the combined date and time /// from date and time fields or a single [`timestamp`](#structfield.timestamp) field. /// Either way those fields have to be consistent to each other. pub fn to_naive_datetime_with_offset(&self, offset: i32) -> ParseResult { let date = self.to_naive_date(); let time = self.to_naive_time(); if let (Ok(date), Ok(time)) = (date, time) { let datetime = date.and_time(time); // verify the timestamp field if any // the following is safe, `timestamp` is very limited in range let timestamp = datetime.timestamp() - i64::from(offset); if let Some(given_timestamp) = self.timestamp { // if `datetime` represents a leap second, it might be off by one second. if given_timestamp != timestamp && !(datetime.nanosecond() >= 1_000_000_000 && given_timestamp == timestamp + 1) { return Err(IMPOSSIBLE); } } Ok(datetime) } else if let Some(timestamp) = self.timestamp { use super::ParseError as PE; use super::ParseErrorKind::{Impossible, OutOfRange}; // if date and time is problematic already, there is no point proceeding. // we at least try to give a correct error though. match (date, time) { (Err(PE(OutOfRange)), _) | (_, Err(PE(OutOfRange))) => return Err(OUT_OF_RANGE), (Err(PE(Impossible)), _) | (_, Err(PE(Impossible))) => return Err(IMPOSSIBLE), (_, _) => {} // one of them is insufficient } // reconstruct date and time fields from timestamp let ts = timestamp.checked_add(i64::from(offset)).ok_or(OUT_OF_RANGE)?; let datetime = NaiveDateTime::from_timestamp_opt(ts, 0); let mut datetime = datetime.ok_or(OUT_OF_RANGE)?; // fill year, ordinal, hour, minute and second fields from timestamp. // if existing fields are consistent, this will allow the full date/time reconstruction. let mut parsed = self.clone(); if parsed.second == Some(60) { // `datetime.second()` cannot be 60, so this is the only case for a leap second. match datetime.second() { // it's okay, just do not try to overwrite the existing field. 59 => {} // `datetime` is known to be off by one second. 0 => { datetime -= OldDuration::seconds(1); } // otherwise it is impossible. _ => return Err(IMPOSSIBLE), } // ...and we have the correct candidates for other fields. } else { parsed.set_second(i64::from(datetime.second()))?; } parsed.set_year(i64::from(datetime.year()))?; parsed.set_ordinal(i64::from(datetime.ordinal()))?; // more efficient than ymd parsed.set_hour(i64::from(datetime.hour()))?; parsed.set_minute(i64::from(datetime.minute()))?; // validate other fields (e.g. week) and return let date = parsed.to_naive_date()?; let time = parsed.to_naive_time()?; Ok(date.and_time(time)) } else { // reproduce the previous error(s) date?; time?; unreachable!() } } /// Returns a parsed fixed time zone offset out of given fields. pub fn to_fixed_offset(&self) -> ParseResult { self.offset.and_then(FixedOffset::east_opt).ok_or(OUT_OF_RANGE) } /// Returns a parsed timezone-aware date and time out of given fields. /// /// This method is able to determine the combined date and time /// from date and time fields or a single [`timestamp`](#structfield.timestamp) field, /// plus a time zone offset. /// Either way those fields have to be consistent to each other. pub fn to_datetime(&self) -> ParseResult> { let offset = self.offset.ok_or(NOT_ENOUGH)?; let datetime = self.to_naive_datetime_with_offset(offset)?; let offset = FixedOffset::east_opt(offset).ok_or(OUT_OF_RANGE)?; // this is used to prevent an overflow when calling FixedOffset::from_local_datetime datetime .checked_sub_signed(OldDuration::seconds(i64::from(offset.local_minus_utc()))) .ok_or(OUT_OF_RANGE)?; match offset.from_local_datetime(&datetime) { LocalResult::None => Err(IMPOSSIBLE), LocalResult::Single(t) => Ok(t), LocalResult::Ambiguous(..) => Err(NOT_ENOUGH), } } /// Returns a parsed timezone-aware date and time out of given fields, /// with an additional `TimeZone` used to interpret and validate the local date. /// /// This method is able to determine the combined date and time /// from date and time fields or a single [`timestamp`](#structfield.timestamp) field, /// plus a time zone offset. /// Either way those fields have to be consistent to each other. /// If parsed fields include an UTC offset, it also has to be consistent to /// [`offset`](#structfield.offset). pub fn to_datetime_with_timezone(&self, tz: &Tz) -> ParseResult> { // if we have `timestamp` specified, guess an offset from that. let mut guessed_offset = 0; if let Some(timestamp) = self.timestamp { // make a naive `DateTime` from given timestamp and (if any) nanosecond. // an empty `nanosecond` is always equal to zero, so missing nanosecond is fine. let nanosecond = self.nanosecond.unwrap_or(0); let dt = NaiveDateTime::from_timestamp_opt(timestamp, nanosecond); let dt = dt.ok_or(OUT_OF_RANGE)?; guessed_offset = tz.offset_from_utc_datetime(&dt).fix().local_minus_utc(); } // checks if the given `DateTime` has a consistent `Offset` with given `self.offset`. let check_offset = |dt: &DateTime| { if let Some(offset) = self.offset { dt.offset().fix().local_minus_utc() == offset } else { true } }; // `guessed_offset` should be correct when `self.timestamp` is given. // it will be 0 otherwise, but this is fine as the algorithm ignores offset for that case. let datetime = self.to_naive_datetime_with_offset(guessed_offset)?; match tz.from_local_datetime(&datetime) { LocalResult::None => Err(IMPOSSIBLE), LocalResult::Single(t) => { if check_offset(&t) { Ok(t) } else { Err(IMPOSSIBLE) } } LocalResult::Ambiguous(min, max) => { // try to disambiguate two possible local dates by offset. match (check_offset(&min), check_offset(&max)) { (false, false) => Err(IMPOSSIBLE), (false, true) => Ok(max), (true, false) => Ok(min), (true, true) => Err(NOT_ENOUGH), } } } } } #[cfg(test)] mod tests { use super::super::{IMPOSSIBLE, NOT_ENOUGH, OUT_OF_RANGE}; use super::Parsed; use crate::naive::{NaiveDate, NaiveTime}; use crate::offset::{FixedOffset, TimeZone, Utc}; use crate::Datelike; use crate::Weekday::*; #[test] fn test_parsed_set_fields() { // year*, isoyear* let mut p = Parsed::new(); assert_eq!(p.set_year(1987), Ok(())); assert_eq!(p.set_year(1986), Err(IMPOSSIBLE)); assert_eq!(p.set_year(1988), Err(IMPOSSIBLE)); assert_eq!(p.set_year(1987), Ok(())); assert_eq!(p.set_year_div_100(20), Ok(())); // independent to `year` assert_eq!(p.set_year_div_100(21), Err(IMPOSSIBLE)); assert_eq!(p.set_year_div_100(19), Err(IMPOSSIBLE)); assert_eq!(p.set_year_mod_100(37), Ok(())); // ditto assert_eq!(p.set_year_mod_100(38), Err(IMPOSSIBLE)); assert_eq!(p.set_year_mod_100(36), Err(IMPOSSIBLE)); let mut p = Parsed::new(); assert_eq!(p.set_year(0), Ok(())); assert_eq!(p.set_year_div_100(0), Ok(())); assert_eq!(p.set_year_mod_100(0), Ok(())); let mut p = Parsed::new(); assert_eq!(p.set_year_div_100(-1), Err(OUT_OF_RANGE)); assert_eq!(p.set_year_mod_100(-1), Err(OUT_OF_RANGE)); assert_eq!(p.set_year(-1), Ok(())); assert_eq!(p.set_year(-2), Err(IMPOSSIBLE)); assert_eq!(p.set_year(0), Err(IMPOSSIBLE)); let mut p = Parsed::new(); assert_eq!(p.set_year_div_100(0x1_0000_0008), Err(OUT_OF_RANGE)); assert_eq!(p.set_year_div_100(8), Ok(())); assert_eq!(p.set_year_div_100(0x1_0000_0008), Err(OUT_OF_RANGE)); // month, week*, isoweek, ordinal, day, minute, second, nanosecond, offset let mut p = Parsed::new(); assert_eq!(p.set_month(7), Ok(())); assert_eq!(p.set_month(1), Err(IMPOSSIBLE)); assert_eq!(p.set_month(6), Err(IMPOSSIBLE)); assert_eq!(p.set_month(8), Err(IMPOSSIBLE)); assert_eq!(p.set_month(12), Err(IMPOSSIBLE)); let mut p = Parsed::new(); assert_eq!(p.set_month(8), Ok(())); assert_eq!(p.set_month(0x1_0000_0008), Err(OUT_OF_RANGE)); // hour let mut p = Parsed::new(); assert_eq!(p.set_hour(12), Ok(())); assert_eq!(p.set_hour(11), Err(IMPOSSIBLE)); assert_eq!(p.set_hour(13), Err(IMPOSSIBLE)); assert_eq!(p.set_hour(12), Ok(())); assert_eq!(p.set_ampm(false), Err(IMPOSSIBLE)); assert_eq!(p.set_ampm(true), Ok(())); assert_eq!(p.set_hour12(12), Ok(())); assert_eq!(p.set_hour12(0), Err(OUT_OF_RANGE)); // requires canonical representation assert_eq!(p.set_hour12(1), Err(IMPOSSIBLE)); assert_eq!(p.set_hour12(11), Err(IMPOSSIBLE)); let mut p = Parsed::new(); assert_eq!(p.set_ampm(true), Ok(())); assert_eq!(p.set_hour12(7), Ok(())); assert_eq!(p.set_hour(7), Err(IMPOSSIBLE)); assert_eq!(p.set_hour(18), Err(IMPOSSIBLE)); assert_eq!(p.set_hour(19), Ok(())); // timestamp let mut p = Parsed::new(); assert_eq!(p.set_timestamp(1_234_567_890), Ok(())); assert_eq!(p.set_timestamp(1_234_567_889), Err(IMPOSSIBLE)); assert_eq!(p.set_timestamp(1_234_567_891), Err(IMPOSSIBLE)); } #[test] fn test_parsed_to_naive_date() { macro_rules! parse { ($($k:ident: $v:expr),*) => ( Parsed { $($k: Some($v),)* ..Parsed::new() }.to_naive_date() ) } let ymd = |y, m, d| Ok(NaiveDate::from_ymd_opt(y, m, d).unwrap()); // ymd: omission of fields assert_eq!(parse!(), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 1984), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 1984, month: 1), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 1984, month: 1, day: 2), ymd(1984, 1, 2)); assert_eq!(parse!(year: 1984, day: 2), Err(NOT_ENOUGH)); assert_eq!(parse!(year_div_100: 19), Err(NOT_ENOUGH)); assert_eq!(parse!(year_div_100: 19, year_mod_100: 84), Err(NOT_ENOUGH)); assert_eq!(parse!(year_div_100: 19, year_mod_100: 84, month: 1), Err(NOT_ENOUGH)); assert_eq!(parse!(year_div_100: 19, year_mod_100: 84, month: 1, day: 2), ymd(1984, 1, 2)); assert_eq!(parse!(year_div_100: 19, year_mod_100: 84, day: 2), Err(NOT_ENOUGH)); assert_eq!(parse!(year_div_100: 19, month: 1, day: 2), Err(NOT_ENOUGH)); assert_eq!(parse!(year_mod_100: 70, month: 1, day: 2), ymd(1970, 1, 2)); assert_eq!(parse!(year_mod_100: 69, month: 1, day: 2), ymd(2069, 1, 2)); // ymd: out-of-range conditions assert_eq!(parse!(year_div_100: 19, year_mod_100: 84, month: 2, day: 29), ymd(1984, 2, 29)); assert_eq!( parse!(year_div_100: 19, year_mod_100: 83, month: 2, day: 29), Err(OUT_OF_RANGE) ); assert_eq!( parse!(year_div_100: 19, year_mod_100: 83, month: 13, day: 1), Err(OUT_OF_RANGE) ); assert_eq!( parse!(year_div_100: 19, year_mod_100: 83, month: 12, day: 31), ymd(1983, 12, 31) ); assert_eq!( parse!(year_div_100: 19, year_mod_100: 83, month: 12, day: 32), Err(OUT_OF_RANGE) ); assert_eq!( parse!(year_div_100: 19, year_mod_100: 83, month: 12, day: 0), Err(OUT_OF_RANGE) ); assert_eq!( parse!(year_div_100: 19, year_mod_100: 100, month: 1, day: 1), Err(OUT_OF_RANGE) ); assert_eq!(parse!(year_div_100: 19, year_mod_100: -1, month: 1, day: 1), Err(OUT_OF_RANGE)); assert_eq!(parse!(year_div_100: 0, year_mod_100: 0, month: 1, day: 1), ymd(0, 1, 1)); assert_eq!(parse!(year_div_100: -1, year_mod_100: 42, month: 1, day: 1), Err(OUT_OF_RANGE)); let max_year = NaiveDate::MAX.year(); assert_eq!( parse!(year_div_100: max_year / 100, year_mod_100: max_year % 100, month: 1, day: 1), ymd(max_year, 1, 1) ); assert_eq!( parse!(year_div_100: (max_year + 1) / 100, year_mod_100: (max_year + 1) % 100, month: 1, day: 1), Err(OUT_OF_RANGE) ); // ymd: conflicting inputs assert_eq!(parse!(year: 1984, year_div_100: 19, month: 1, day: 1), ymd(1984, 1, 1)); assert_eq!(parse!(year: 1984, year_div_100: 20, month: 1, day: 1), Err(IMPOSSIBLE)); assert_eq!(parse!(year: 1984, year_mod_100: 84, month: 1, day: 1), ymd(1984, 1, 1)); assert_eq!(parse!(year: 1984, year_mod_100: 83, month: 1, day: 1), Err(IMPOSSIBLE)); assert_eq!( parse!(year: 1984, year_div_100: 19, year_mod_100: 84, month: 1, day: 1), ymd(1984, 1, 1) ); assert_eq!( parse!(year: 1984, year_div_100: 18, year_mod_100: 94, month: 1, day: 1), Err(IMPOSSIBLE) ); assert_eq!( parse!(year: 1984, year_div_100: 18, year_mod_100: 184, month: 1, day: 1), Err(OUT_OF_RANGE) ); assert_eq!( parse!(year: -1, year_div_100: 0, year_mod_100: -1, month: 1, day: 1), Err(OUT_OF_RANGE) ); assert_eq!( parse!(year: -1, year_div_100: -1, year_mod_100: 99, month: 1, day: 1), Err(OUT_OF_RANGE) ); assert_eq!(parse!(year: -1, year_div_100: 0, month: 1, day: 1), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: -1, year_mod_100: 99, month: 1, day: 1), Err(OUT_OF_RANGE)); // weekdates assert_eq!(parse!(year: 2000, week_from_mon: 0), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 2000, week_from_sun: 0), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 2000, weekday: Sun), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 2000, week_from_mon: 0, weekday: Fri), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2000, week_from_sun: 0, weekday: Fri), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2000, week_from_mon: 0, weekday: Sat), ymd(2000, 1, 1)); assert_eq!(parse!(year: 2000, week_from_sun: 0, weekday: Sat), ymd(2000, 1, 1)); assert_eq!(parse!(year: 2000, week_from_mon: 0, weekday: Sun), ymd(2000, 1, 2)); assert_eq!(parse!(year: 2000, week_from_sun: 1, weekday: Sun), ymd(2000, 1, 2)); assert_eq!(parse!(year: 2000, week_from_mon: 1, weekday: Mon), ymd(2000, 1, 3)); assert_eq!(parse!(year: 2000, week_from_sun: 1, weekday: Mon), ymd(2000, 1, 3)); assert_eq!(parse!(year: 2000, week_from_mon: 1, weekday: Sat), ymd(2000, 1, 8)); assert_eq!(parse!(year: 2000, week_from_sun: 1, weekday: Sat), ymd(2000, 1, 8)); assert_eq!(parse!(year: 2000, week_from_mon: 1, weekday: Sun), ymd(2000, 1, 9)); assert_eq!(parse!(year: 2000, week_from_sun: 2, weekday: Sun), ymd(2000, 1, 9)); assert_eq!(parse!(year: 2000, week_from_mon: 2, weekday: Mon), ymd(2000, 1, 10)); assert_eq!(parse!(year: 2000, week_from_sun: 52, weekday: Sat), ymd(2000, 12, 30)); assert_eq!(parse!(year: 2000, week_from_sun: 53, weekday: Sun), ymd(2000, 12, 31)); assert_eq!(parse!(year: 2000, week_from_sun: 53, weekday: Mon), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2000, week_from_sun: 0xffffffff, weekday: Mon), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2006, week_from_sun: 0, weekday: Sat), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2006, week_from_sun: 1, weekday: Sun), ymd(2006, 1, 1)); // weekdates: conflicting inputs assert_eq!( parse!(year: 2000, week_from_mon: 1, week_from_sun: 1, weekday: Sat), ymd(2000, 1, 8) ); assert_eq!( parse!(year: 2000, week_from_mon: 1, week_from_sun: 2, weekday: Sun), ymd(2000, 1, 9) ); assert_eq!( parse!(year: 2000, week_from_mon: 1, week_from_sun: 1, weekday: Sun), Err(IMPOSSIBLE) ); assert_eq!( parse!(year: 2000, week_from_mon: 2, week_from_sun: 2, weekday: Sun), Err(IMPOSSIBLE) ); // ISO weekdates assert_eq!(parse!(isoyear: 2004, isoweek: 53), Err(NOT_ENOUGH)); assert_eq!(parse!(isoyear: 2004, isoweek: 53, weekday: Fri), ymd(2004, 12, 31)); assert_eq!(parse!(isoyear: 2004, isoweek: 53, weekday: Sat), ymd(2005, 1, 1)); assert_eq!(parse!(isoyear: 2004, isoweek: 0xffffffff, weekday: Sat), Err(OUT_OF_RANGE)); assert_eq!(parse!(isoyear: 2005, isoweek: 0, weekday: Thu), Err(OUT_OF_RANGE)); assert_eq!(parse!(isoyear: 2005, isoweek: 5, weekday: Thu), ymd(2005, 2, 3)); assert_eq!(parse!(isoyear: 2005, weekday: Thu), Err(NOT_ENOUGH)); // year and ordinal assert_eq!(parse!(ordinal: 123), Err(NOT_ENOUGH)); assert_eq!(parse!(year: 2000, ordinal: 0), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2000, ordinal: 1), ymd(2000, 1, 1)); assert_eq!(parse!(year: 2000, ordinal: 60), ymd(2000, 2, 29)); assert_eq!(parse!(year: 2000, ordinal: 61), ymd(2000, 3, 1)); assert_eq!(parse!(year: 2000, ordinal: 366), ymd(2000, 12, 31)); assert_eq!(parse!(year: 2000, ordinal: 367), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2000, ordinal: 0xffffffff), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2100, ordinal: 0), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2100, ordinal: 1), ymd(2100, 1, 1)); assert_eq!(parse!(year: 2100, ordinal: 59), ymd(2100, 2, 28)); assert_eq!(parse!(year: 2100, ordinal: 60), ymd(2100, 3, 1)); assert_eq!(parse!(year: 2100, ordinal: 365), ymd(2100, 12, 31)); assert_eq!(parse!(year: 2100, ordinal: 366), Err(OUT_OF_RANGE)); assert_eq!(parse!(year: 2100, ordinal: 0xffffffff), Err(OUT_OF_RANGE)); // more complex cases assert_eq!( parse!(year: 2014, month: 12, day: 31, ordinal: 365, isoyear: 2015, isoweek: 1, week_from_sun: 52, week_from_mon: 52, weekday: Wed), ymd(2014, 12, 31) ); assert_eq!( parse!(year: 2014, month: 12, ordinal: 365, isoyear: 2015, isoweek: 1, week_from_sun: 52, week_from_mon: 52), ymd(2014, 12, 31) ); assert_eq!( parse!(year: 2014, month: 12, day: 31, ordinal: 365, isoyear: 2014, isoweek: 53, week_from_sun: 52, week_from_mon: 52, weekday: Wed), Err(IMPOSSIBLE) ); // no ISO week date 2014-W53-3 assert_eq!( parse!(year: 2012, isoyear: 2015, isoweek: 1, week_from_sun: 52, week_from_mon: 52), Err(NOT_ENOUGH) ); // ambiguous (2014-12-29, 2014-12-30, 2014-12-31) assert_eq!(parse!(year_div_100: 20, isoyear_mod_100: 15, ordinal: 366), Err(NOT_ENOUGH)); // technically unique (2014-12-31) but Chrono gives up } #[test] fn test_parsed_to_naive_time() { macro_rules! parse { ($($k:ident: $v:expr),*) => ( Parsed { $($k: Some($v),)* ..Parsed::new() }.to_naive_time() ) } let hms = |h, m, s| Ok(NaiveTime::from_hms_opt(h, m, s).unwrap()); let hmsn = |h, m, s, n| Ok(NaiveTime::from_hms_nano_opt(h, m, s, n).unwrap()); // omission of fields assert_eq!(parse!(), Err(NOT_ENOUGH)); assert_eq!(parse!(hour_div_12: 0), Err(NOT_ENOUGH)); assert_eq!(parse!(hour_div_12: 0, hour_mod_12: 1), Err(NOT_ENOUGH)); assert_eq!(parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23), hms(1, 23, 0)); assert_eq!(parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, second: 45), hms(1, 23, 45)); assert_eq!( parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, second: 45, nanosecond: 678_901_234), hmsn(1, 23, 45, 678_901_234) ); assert_eq!(parse!(hour_div_12: 1, hour_mod_12: 11, minute: 45, second: 6), hms(23, 45, 6)); assert_eq!(parse!(hour_mod_12: 1, minute: 23), Err(NOT_ENOUGH)); assert_eq!( parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, nanosecond: 456_789_012), Err(NOT_ENOUGH) ); // out-of-range conditions assert_eq!(parse!(hour_div_12: 2, hour_mod_12: 0, minute: 0), Err(OUT_OF_RANGE)); assert_eq!(parse!(hour_div_12: 1, hour_mod_12: 12, minute: 0), Err(OUT_OF_RANGE)); assert_eq!(parse!(hour_div_12: 0, hour_mod_12: 1, minute: 60), Err(OUT_OF_RANGE)); assert_eq!( parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, second: 61), Err(OUT_OF_RANGE) ); assert_eq!( parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, second: 34, nanosecond: 1_000_000_000), Err(OUT_OF_RANGE) ); // leap seconds assert_eq!( parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, second: 60), hmsn(1, 23, 59, 1_000_000_000) ); assert_eq!( parse!(hour_div_12: 0, hour_mod_12: 1, minute: 23, second: 60, nanosecond: 999_999_999), hmsn(1, 23, 59, 1_999_999_999) ); } #[test] fn test_parsed_to_naive_datetime_with_offset() { macro_rules! parse { (offset = $offset:expr; $($k:ident: $v:expr),*) => ( Parsed { $($k: Some($v),)* ..Parsed::new() }.to_naive_datetime_with_offset($offset) ); ($($k:ident: $v:expr),*) => (parse!(offset = 0; $($k: $v),*)) } let ymdhms = |y, m, d, h, n, s| { Ok(NaiveDate::from_ymd_opt(y, m, d).unwrap().and_hms_opt(h, n, s).unwrap()) }; let ymdhmsn = |y, m, d, h, n, s, nano| { Ok(NaiveDate::from_ymd_opt(y, m, d).unwrap().and_hms_nano_opt(h, n, s, nano).unwrap()) }; // omission of fields assert_eq!(parse!(), Err(NOT_ENOUGH)); assert_eq!( parse!(year: 2015, month: 1, day: 30, hour_div_12: 1, hour_mod_12: 2, minute: 38), ymdhms(2015, 1, 30, 14, 38, 0) ); assert_eq!( parse!(year: 1997, month: 1, day: 30, hour_div_12: 1, hour_mod_12: 2, minute: 38, second: 5), ymdhms(1997, 1, 30, 14, 38, 5) ); assert_eq!( parse!(year: 2012, ordinal: 34, hour_div_12: 0, hour_mod_12: 5, minute: 6, second: 7, nanosecond: 890_123_456), ymdhmsn(2012, 2, 3, 5, 6, 7, 890_123_456) ); assert_eq!(parse!(timestamp: 0), ymdhms(1970, 1, 1, 0, 0, 0)); assert_eq!(parse!(timestamp: 1, nanosecond: 0), ymdhms(1970, 1, 1, 0, 0, 1)); assert_eq!(parse!(timestamp: 1, nanosecond: 1), ymdhmsn(1970, 1, 1, 0, 0, 1, 1)); assert_eq!(parse!(timestamp: 1_420_000_000), ymdhms(2014, 12, 31, 4, 26, 40)); assert_eq!(parse!(timestamp: -0x1_0000_0000), ymdhms(1833, 11, 24, 17, 31, 44)); // full fields assert_eq!( parse!(year: 2014, year_div_100: 20, year_mod_100: 14, month: 12, day: 31, ordinal: 365, isoyear: 2015, isoyear_div_100: 20, isoyear_mod_100: 15, isoweek: 1, week_from_sun: 52, week_from_mon: 52, weekday: Wed, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, timestamp: 1_420_000_000), ymdhmsn(2014, 12, 31, 4, 26, 40, 12_345_678) ); assert_eq!( parse!(year: 2014, year_div_100: 20, year_mod_100: 14, month: 12, day: 31, ordinal: 365, isoyear: 2015, isoyear_div_100: 20, isoyear_mod_100: 15, isoweek: 1, week_from_sun: 52, week_from_mon: 52, weekday: Wed, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, timestamp: 1_419_999_999), Err(IMPOSSIBLE) ); assert_eq!( parse!(offset = 32400; year: 2014, year_div_100: 20, year_mod_100: 14, month: 12, day: 31, ordinal: 365, isoyear: 2015, isoyear_div_100: 20, isoyear_mod_100: 15, isoweek: 1, week_from_sun: 52, week_from_mon: 52, weekday: Wed, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, timestamp: 1_419_967_600), ymdhmsn(2014, 12, 31, 4, 26, 40, 12_345_678) ); // more timestamps let max_days_from_year_1970 = NaiveDate::MAX.signed_duration_since(NaiveDate::from_ymd_opt(1970, 1, 1).unwrap()); let year_0_from_year_1970 = NaiveDate::from_ymd_opt(0, 1, 1) .unwrap() .signed_duration_since(NaiveDate::from_ymd_opt(1970, 1, 1).unwrap()); let min_days_from_year_1970 = NaiveDate::MIN.signed_duration_since(NaiveDate::from_ymd_opt(1970, 1, 1).unwrap()); assert_eq!( parse!(timestamp: min_days_from_year_1970.num_seconds()), ymdhms(NaiveDate::MIN.year(), 1, 1, 0, 0, 0) ); assert_eq!( parse!(timestamp: year_0_from_year_1970.num_seconds()), ymdhms(0, 1, 1, 0, 0, 0) ); assert_eq!( parse!(timestamp: max_days_from_year_1970.num_seconds() + 86399), ymdhms(NaiveDate::MAX.year(), 12, 31, 23, 59, 59) ); // leap seconds #1: partial fields assert_eq!(parse!(second: 59, timestamp: 1_341_100_798), Err(IMPOSSIBLE)); assert_eq!(parse!(second: 59, timestamp: 1_341_100_799), ymdhms(2012, 6, 30, 23, 59, 59)); assert_eq!(parse!(second: 59, timestamp: 1_341_100_800), Err(IMPOSSIBLE)); assert_eq!( parse!(second: 60, timestamp: 1_341_100_799), ymdhmsn(2012, 6, 30, 23, 59, 59, 1_000_000_000) ); assert_eq!( parse!(second: 60, timestamp: 1_341_100_800), ymdhmsn(2012, 6, 30, 23, 59, 59, 1_000_000_000) ); assert_eq!(parse!(second: 0, timestamp: 1_341_100_800), ymdhms(2012, 7, 1, 0, 0, 0)); assert_eq!(parse!(second: 1, timestamp: 1_341_100_800), Err(IMPOSSIBLE)); assert_eq!(parse!(second: 60, timestamp: 1_341_100_801), Err(IMPOSSIBLE)); // leap seconds #2: full fields // we need to have separate tests for them since it uses another control flow. assert_eq!( parse!(year: 2012, ordinal: 182, hour_div_12: 1, hour_mod_12: 11, minute: 59, second: 59, timestamp: 1_341_100_798), Err(IMPOSSIBLE) ); assert_eq!( parse!(year: 2012, ordinal: 182, hour_div_12: 1, hour_mod_12: 11, minute: 59, second: 59, timestamp: 1_341_100_799), ymdhms(2012, 6, 30, 23, 59, 59) ); assert_eq!( parse!(year: 2012, ordinal: 182, hour_div_12: 1, hour_mod_12: 11, minute: 59, second: 59, timestamp: 1_341_100_800), Err(IMPOSSIBLE) ); assert_eq!( parse!(year: 2012, ordinal: 182, hour_div_12: 1, hour_mod_12: 11, minute: 59, second: 60, timestamp: 1_341_100_799), ymdhmsn(2012, 6, 30, 23, 59, 59, 1_000_000_000) ); assert_eq!( parse!(year: 2012, ordinal: 182, hour_div_12: 1, hour_mod_12: 11, minute: 59, second: 60, timestamp: 1_341_100_800), ymdhmsn(2012, 6, 30, 23, 59, 59, 1_000_000_000) ); assert_eq!( parse!(year: 2012, ordinal: 183, hour_div_12: 0, hour_mod_12: 0, minute: 0, second: 0, timestamp: 1_341_100_800), ymdhms(2012, 7, 1, 0, 0, 0) ); assert_eq!( parse!(year: 2012, ordinal: 183, hour_div_12: 0, hour_mod_12: 0, minute: 0, second: 1, timestamp: 1_341_100_800), Err(IMPOSSIBLE) ); assert_eq!( parse!(year: 2012, ordinal: 182, hour_div_12: 1, hour_mod_12: 11, minute: 59, second: 60, timestamp: 1_341_100_801), Err(IMPOSSIBLE) ); // error codes assert_eq!( parse!(year: 2015, month: 1, day: 20, weekday: Tue, hour_div_12: 2, hour_mod_12: 1, minute: 35, second: 20), Err(OUT_OF_RANGE) ); // `hour_div_12` is out of range } #[test] fn test_parsed_to_datetime() { macro_rules! parse { ($($k:ident: $v:expr),*) => ( Parsed { $($k: Some($v),)* ..Parsed::new() }.to_datetime() ) } let ymdhmsn = |y, m, d, h, n, s, nano, off| { Ok(FixedOffset::east_opt(off) .unwrap() .from_local_datetime( &NaiveDate::from_ymd_opt(y, m, d) .unwrap() .and_hms_nano_opt(h, n, s, nano) .unwrap(), ) .unwrap()) }; assert_eq!(parse!(offset: 0), Err(NOT_ENOUGH)); assert_eq!( parse!(year: 2014, ordinal: 365, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678), Err(NOT_ENOUGH) ); assert_eq!( parse!(year: 2014, ordinal: 365, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, offset: 0), ymdhmsn(2014, 12, 31, 4, 26, 40, 12_345_678, 0) ); assert_eq!( parse!(year: 2014, ordinal: 365, hour_div_12: 1, hour_mod_12: 1, minute: 26, second: 40, nanosecond: 12_345_678, offset: 32400), ymdhmsn(2014, 12, 31, 13, 26, 40, 12_345_678, 32400) ); assert_eq!( parse!(year: 2014, ordinal: 365, hour_div_12: 0, hour_mod_12: 1, minute: 42, second: 4, nanosecond: 12_345_678, offset: -9876), ymdhmsn(2014, 12, 31, 1, 42, 4, 12_345_678, -9876) ); assert_eq!( parse!(year: 2015, ordinal: 1, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, offset: 86_400), Err(OUT_OF_RANGE) ); // `FixedOffset` does not support such huge offset } #[test] fn test_parsed_to_datetime_with_timezone() { macro_rules! parse { ($tz:expr; $($k:ident: $v:expr),*) => ( Parsed { $($k: Some($v),)* ..Parsed::new() }.to_datetime_with_timezone(&$tz) ) } // single result from ymdhms assert_eq!( parse!(Utc; year: 2014, ordinal: 365, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, offset: 0), Ok(Utc .from_local_datetime( &NaiveDate::from_ymd_opt(2014, 12, 31) .unwrap() .and_hms_nano_opt(4, 26, 40, 12_345_678) .unwrap() ) .unwrap()) ); assert_eq!( parse!(Utc; year: 2014, ordinal: 365, hour_div_12: 1, hour_mod_12: 1, minute: 26, second: 40, nanosecond: 12_345_678, offset: 32400), Err(IMPOSSIBLE) ); assert_eq!( parse!(FixedOffset::east_opt(32400).unwrap(); year: 2014, ordinal: 365, hour_div_12: 0, hour_mod_12: 4, minute: 26, second: 40, nanosecond: 12_345_678, offset: 0), Err(IMPOSSIBLE) ); assert_eq!( parse!(FixedOffset::east_opt(32400).unwrap(); year: 2014, ordinal: 365, hour_div_12: 1, hour_mod_12: 1, minute: 26, second: 40, nanosecond: 12_345_678, offset: 32400), Ok(FixedOffset::east_opt(32400) .unwrap() .from_local_datetime( &NaiveDate::from_ymd_opt(2014, 12, 31) .unwrap() .and_hms_nano_opt(13, 26, 40, 12_345_678) .unwrap() ) .unwrap()) ); // single result from timestamp assert_eq!( parse!(Utc; timestamp: 1_420_000_000, offset: 0), Ok(Utc.with_ymd_and_hms(2014, 12, 31, 4, 26, 40).unwrap()) ); assert_eq!(parse!(Utc; timestamp: 1_420_000_000, offset: 32400), Err(IMPOSSIBLE)); assert_eq!( parse!(FixedOffset::east_opt(32400).unwrap(); timestamp: 1_420_000_000, offset: 0), Err(IMPOSSIBLE) ); assert_eq!( parse!(FixedOffset::east_opt(32400).unwrap(); timestamp: 1_420_000_000, offset: 32400), Ok(FixedOffset::east_opt(32400) .unwrap() .with_ymd_and_hms(2014, 12, 31, 13, 26, 40) .unwrap()) ); // TODO test with a variable time zone (for None and Ambiguous cases) } #[test] fn issue_551() { use crate::Weekday; let mut parsed = Parsed::new(); parsed.year = Some(2002); parsed.week_from_mon = Some(22); parsed.weekday = Some(Weekday::Mon); assert_eq!(NaiveDate::from_ymd_opt(2002, 6, 3).unwrap(), parsed.to_naive_date().unwrap()); parsed.year = Some(2001); assert_eq!(NaiveDate::from_ymd_opt(2001, 5, 28).unwrap(), parsed.to_naive_date().unwrap()); } }