use std::cmp::Ordering; use super::parser::Cursor; use super::timezone::{LocalTimeType, SECONDS_PER_WEEK}; use super::{ Error, CUMUL_DAY_IN_MONTHS_NORMAL_YEAR, DAYS_PER_WEEK, DAY_IN_MONTHS_NORMAL_YEAR, SECONDS_PER_DAY, }; /// Transition rule #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub(super) enum TransitionRule { /// Fixed local time type Fixed(LocalTimeType), /// Alternate local time types Alternate(AlternateTime), } impl TransitionRule { /// Parse a POSIX TZ string containing a time zone description, as described in [the POSIX documentation of the `TZ` environment variable](https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html). /// /// TZ string extensions from [RFC 8536](https://datatracker.ietf.org/doc/html/rfc8536#section-3.3.1) may be used. /// pub(super) fn from_tz_string( tz_string: &[u8], use_string_extensions: bool, ) -> Result { let mut cursor = Cursor::new(tz_string); let std_time_zone = Some(parse_name(&mut cursor)?); let std_offset = parse_offset(&mut cursor)?; if cursor.is_empty() { return Ok(LocalTimeType::new(-std_offset, false, std_time_zone)?.into()); } let dst_time_zone = Some(parse_name(&mut cursor)?); let dst_offset = match cursor.peek() { Some(&b',') => std_offset - 3600, Some(_) => parse_offset(&mut cursor)?, None => { return Err(Error::UnsupportedTzString("DST start and end rules must be provided")) } }; if cursor.is_empty() { return Err(Error::UnsupportedTzString("DST start and end rules must be provided")); } cursor.read_tag(b",")?; let (dst_start, dst_start_time) = RuleDay::parse(&mut cursor, use_string_extensions)?; cursor.read_tag(b",")?; let (dst_end, dst_end_time) = RuleDay::parse(&mut cursor, use_string_extensions)?; if !cursor.is_empty() { return Err(Error::InvalidTzString("remaining data after parsing TZ string")); } Ok(AlternateTime::new( LocalTimeType::new(-std_offset, false, std_time_zone)?, LocalTimeType::new(-dst_offset, true, dst_time_zone)?, dst_start, dst_start_time, dst_end, dst_end_time, )? .into()) } /// Find the local time type associated to the transition rule at the specified Unix time in seconds pub(super) fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> { match self { TransitionRule::Fixed(local_time_type) => Ok(local_time_type), TransitionRule::Alternate(alternate_time) => { alternate_time.find_local_time_type(unix_time) } } } /// Find the local time type associated to the transition rule at the specified Unix time in seconds pub(super) fn find_local_time_type_from_local( &self, local_time: i64, year: i32, ) -> Result, Error> { match self { TransitionRule::Fixed(local_time_type) => { Ok(crate::LocalResult::Single(*local_time_type)) } TransitionRule::Alternate(alternate_time) => { alternate_time.find_local_time_type_from_local(local_time, year) } } } } impl From for TransitionRule { fn from(inner: LocalTimeType) -> Self { TransitionRule::Fixed(inner) } } impl From for TransitionRule { fn from(inner: AlternateTime) -> Self { TransitionRule::Alternate(inner) } } /// Transition rule representing alternate local time types #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub(super) struct AlternateTime { /// Local time type for standard time pub(super) std: LocalTimeType, /// Local time type for Daylight Saving Time pub(super) dst: LocalTimeType, /// Start day of Daylight Saving Time dst_start: RuleDay, /// Local start day time of Daylight Saving Time, in seconds dst_start_time: i32, /// End day of Daylight Saving Time dst_end: RuleDay, /// Local end day time of Daylight Saving Time, in seconds dst_end_time: i32, } impl AlternateTime { /// Construct a transition rule representing alternate local time types const fn new( std: LocalTimeType, dst: LocalTimeType, dst_start: RuleDay, dst_start_time: i32, dst_end: RuleDay, dst_end_time: i32, ) -> Result { // Overflow is not possible if !((dst_start_time as i64).abs() < SECONDS_PER_WEEK && (dst_end_time as i64).abs() < SECONDS_PER_WEEK) { return Err(Error::TransitionRule("invalid DST start or end time")); } Ok(Self { std, dst, dst_start, dst_start_time, dst_end, dst_end_time }) } /// Find the local time type associated to the alternate transition rule at the specified Unix time in seconds fn find_local_time_type(&self, unix_time: i64) -> Result<&LocalTimeType, Error> { // Overflow is not possible let dst_start_time_in_utc = self.dst_start_time as i64 - self.std.ut_offset as i64; let dst_end_time_in_utc = self.dst_end_time as i64 - self.dst.ut_offset as i64; let current_year = match UtcDateTime::from_timespec(unix_time) { Ok(dt) => dt.year, Err(error) => return Err(error), }; // Check if the current year is valid for the following computations if !(i32::min_value() + 2 <= current_year && current_year <= i32::max_value() - 2) { return Err(Error::OutOfRange("out of range date time")); } let current_year_dst_start_unix_time = self.dst_start.unix_time(current_year, dst_start_time_in_utc); let current_year_dst_end_unix_time = self.dst_end.unix_time(current_year, dst_end_time_in_utc); // Check DST start/end Unix times for previous/current/next years to support for transition day times outside of [0h, 24h] range let is_dst = match Ord::cmp(¤t_year_dst_start_unix_time, ¤t_year_dst_end_unix_time) { Ordering::Less | Ordering::Equal => { if unix_time < current_year_dst_start_unix_time { let previous_year_dst_end_unix_time = self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc); if unix_time < previous_year_dst_end_unix_time { let previous_year_dst_start_unix_time = self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc); previous_year_dst_start_unix_time <= unix_time } else { false } } else if unix_time < current_year_dst_end_unix_time { true } else { let next_year_dst_start_unix_time = self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc); if next_year_dst_start_unix_time <= unix_time { let next_year_dst_end_unix_time = self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc); unix_time < next_year_dst_end_unix_time } else { false } } } Ordering::Greater => { if unix_time < current_year_dst_end_unix_time { let previous_year_dst_start_unix_time = self.dst_start.unix_time(current_year - 1, dst_start_time_in_utc); if unix_time < previous_year_dst_start_unix_time { let previous_year_dst_end_unix_time = self.dst_end.unix_time(current_year - 1, dst_end_time_in_utc); unix_time < previous_year_dst_end_unix_time } else { true } } else if unix_time < current_year_dst_start_unix_time { false } else { let next_year_dst_end_unix_time = self.dst_end.unix_time(current_year + 1, dst_end_time_in_utc); if next_year_dst_end_unix_time <= unix_time { let next_year_dst_start_unix_time = self.dst_start.unix_time(current_year + 1, dst_start_time_in_utc); next_year_dst_start_unix_time <= unix_time } else { true } } } }; if is_dst { Ok(&self.dst) } else { Ok(&self.std) } } fn find_local_time_type_from_local( &self, local_time: i64, current_year: i32, ) -> Result, Error> { // Check if the current year is valid for the following computations if !(i32::min_value() + 2 <= current_year && current_year <= i32::max_value() - 2) { return Err(Error::OutOfRange("out of range date time")); } let dst_start_transition_start = self.dst_start.unix_time(current_year, 0) + i64::from(self.dst_start_time); let dst_start_transition_end = self.dst_start.unix_time(current_year, 0) + i64::from(self.dst_start_time) + i64::from(self.dst.ut_offset) - i64::from(self.std.ut_offset); let dst_end_transition_start = self.dst_end.unix_time(current_year, 0) + i64::from(self.dst_end_time); let dst_end_transition_end = self.dst_end.unix_time(current_year, 0) + i64::from(self.dst_end_time) + i64::from(self.std.ut_offset) - i64::from(self.dst.ut_offset); match self.std.ut_offset.cmp(&self.dst.ut_offset) { Ordering::Equal => Ok(crate::LocalResult::Single(self.std)), Ordering::Less => { if self.dst_start.transition_date(current_year).0 < self.dst_end.transition_date(current_year).0 { // northern hemisphere // For the DST END transition, the `start` happens at a later timestamp than the `end`. if local_time <= dst_start_transition_start { Ok(crate::LocalResult::Single(self.std)) } else if local_time > dst_start_transition_start && local_time < dst_start_transition_end { Ok(crate::LocalResult::None) } else if local_time >= dst_start_transition_end && local_time < dst_end_transition_end { Ok(crate::LocalResult::Single(self.dst)) } else if local_time >= dst_end_transition_end && local_time <= dst_end_transition_start { Ok(crate::LocalResult::Ambiguous(self.std, self.dst)) } else { Ok(crate::LocalResult::Single(self.std)) } } else { // southern hemisphere regular DST // For the DST END transition, the `start` happens at a later timestamp than the `end`. if local_time < dst_end_transition_end { Ok(crate::LocalResult::Single(self.dst)) } else if local_time >= dst_end_transition_end && local_time <= dst_end_transition_start { Ok(crate::LocalResult::Ambiguous(self.std, self.dst)) } else if local_time > dst_end_transition_end && local_time < dst_start_transition_start { Ok(crate::LocalResult::Single(self.std)) } else if local_time >= dst_start_transition_start && local_time < dst_start_transition_end { Ok(crate::LocalResult::None) } else { Ok(crate::LocalResult::Single(self.dst)) } } } Ordering::Greater => { if self.dst_start.transition_date(current_year).0 < self.dst_end.transition_date(current_year).0 { // southern hemisphere reverse DST // For the DST END transition, the `start` happens at a later timestamp than the `end`. if local_time < dst_start_transition_end { Ok(crate::LocalResult::Single(self.std)) } else if local_time >= dst_start_transition_end && local_time <= dst_start_transition_start { Ok(crate::LocalResult::Ambiguous(self.dst, self.std)) } else if local_time > dst_start_transition_start && local_time < dst_end_transition_start { Ok(crate::LocalResult::Single(self.dst)) } else if local_time >= dst_end_transition_start && local_time < dst_end_transition_end { Ok(crate::LocalResult::None) } else { Ok(crate::LocalResult::Single(self.std)) } } else { // northern hemisphere reverse DST // For the DST END transition, the `start` happens at a later timestamp than the `end`. if local_time <= dst_end_transition_start { Ok(crate::LocalResult::Single(self.dst)) } else if local_time > dst_end_transition_start && local_time < dst_end_transition_end { Ok(crate::LocalResult::None) } else if local_time >= dst_end_transition_end && local_time < dst_start_transition_end { Ok(crate::LocalResult::Single(self.std)) } else if local_time >= dst_start_transition_end && local_time <= dst_start_transition_start { Ok(crate::LocalResult::Ambiguous(self.dst, self.std)) } else { Ok(crate::LocalResult::Single(self.dst)) } } } } } } /// Parse time zone name fn parse_name<'a>(cursor: &mut Cursor<'a>) -> Result<&'a [u8], Error> { match cursor.peek() { Some(b'<') => {} _ => return Ok(cursor.read_while(u8::is_ascii_alphabetic)?), } cursor.read_exact(1)?; let unquoted = cursor.read_until(|&x| x == b'>')?; cursor.read_exact(1)?; Ok(unquoted) } /// Parse time zone offset fn parse_offset(cursor: &mut Cursor) -> Result { let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?; if !(0..=24).contains(&hour) { return Err(Error::InvalidTzString("invalid offset hour")); } if !(0..=59).contains(&minute) { return Err(Error::InvalidTzString("invalid offset minute")); } if !(0..=59).contains(&second) { return Err(Error::InvalidTzString("invalid offset second")); } Ok(sign * (hour * 3600 + minute * 60 + second)) } /// Parse transition rule time fn parse_rule_time(cursor: &mut Cursor) -> Result { let (hour, minute, second) = parse_hhmmss(cursor)?; if !(0..=24).contains(&hour) { return Err(Error::InvalidTzString("invalid day time hour")); } if !(0..=59).contains(&minute) { return Err(Error::InvalidTzString("invalid day time minute")); } if !(0..=59).contains(&second) { return Err(Error::InvalidTzString("invalid day time second")); } Ok(hour * 3600 + minute * 60 + second) } /// Parse transition rule time with TZ string extensions fn parse_rule_time_extended(cursor: &mut Cursor) -> Result { let (sign, hour, minute, second) = parse_signed_hhmmss(cursor)?; if !(-167..=167).contains(&hour) { return Err(Error::InvalidTzString("invalid day time hour")); } if !(0..=59).contains(&minute) { return Err(Error::InvalidTzString("invalid day time minute")); } if !(0..=59).contains(&second) { return Err(Error::InvalidTzString("invalid day time second")); } Ok(sign * (hour * 3600 + minute * 60 + second)) } /// Parse hours, minutes and seconds fn parse_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32), Error> { let hour = cursor.read_int()?; let mut minute = 0; let mut second = 0; if cursor.read_optional_tag(b":")? { minute = cursor.read_int()?; if cursor.read_optional_tag(b":")? { second = cursor.read_int()?; } } Ok((hour, minute, second)) } /// Parse signed hours, minutes and seconds fn parse_signed_hhmmss(cursor: &mut Cursor) -> Result<(i32, i32, i32, i32), Error> { let mut sign = 1; if let Some(&c) = cursor.peek() { if c == b'+' || c == b'-' { cursor.read_exact(1)?; if c == b'-' { sign = -1; } } } let (hour, minute, second) = parse_hhmmss(cursor)?; Ok((sign, hour, minute, second)) } /// Transition rule day #[derive(Debug, Copy, Clone, Eq, PartialEq)] enum RuleDay { /// Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable Julian1WithoutLeap(u16), /// Zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account Julian0WithLeap(u16), /// Day represented by a month, a month week and a week day MonthWeekday { /// Month in `[1, 12]` month: u8, /// Week of the month in `[1, 5]`, with `5` representing the last week of the month week: u8, /// Day of the week in `[0, 6]` from Sunday week_day: u8, }, } impl RuleDay { /// Parse transition rule fn parse(cursor: &mut Cursor, use_string_extensions: bool) -> Result<(Self, i32), Error> { let date = match cursor.peek() { Some(b'M') => { cursor.read_exact(1)?; let month = cursor.read_int()?; cursor.read_tag(b".")?; let week = cursor.read_int()?; cursor.read_tag(b".")?; let week_day = cursor.read_int()?; RuleDay::month_weekday(month, week, week_day)? } Some(b'J') => { cursor.read_exact(1)?; RuleDay::julian_1(cursor.read_int()?)? } _ => RuleDay::julian_0(cursor.read_int()?)?, }; Ok(( date, match (cursor.read_optional_tag(b"/")?, use_string_extensions) { (false, _) => 2 * 3600, (true, true) => parse_rule_time_extended(cursor)?, (true, false) => parse_rule_time(cursor)?, }, )) } /// Construct a transition rule day represented by a Julian day in `[1, 365]`, without taking occasional Feb 29 into account, which is not referenceable fn julian_1(julian_day_1: u16) -> Result { if !(1..=365).contains(&julian_day_1) { return Err(Error::TransitionRule("invalid rule day julian day")); } Ok(RuleDay::Julian1WithoutLeap(julian_day_1)) } /// Construct a transition rule day represented by a zero-based Julian day in `[0, 365]`, taking occasional Feb 29 into account const fn julian_0(julian_day_0: u16) -> Result { if julian_day_0 > 365 { return Err(Error::TransitionRule("invalid rule day julian day")); } Ok(RuleDay::Julian0WithLeap(julian_day_0)) } /// Construct a transition rule day represented by a month, a month week and a week day fn month_weekday(month: u8, week: u8, week_day: u8) -> Result { if !(1..=12).contains(&month) { return Err(Error::TransitionRule("invalid rule day month")); } if !(1..=5).contains(&week) { return Err(Error::TransitionRule("invalid rule day week")); } if week_day > 6 { return Err(Error::TransitionRule("invalid rule day week day")); } Ok(RuleDay::MonthWeekday { month, week, week_day }) } /// Get the transition date for the provided year /// /// ## Outputs /// /// * `month`: Month in `[1, 12]` /// * `month_day`: Day of the month in `[1, 31]` fn transition_date(&self, year: i32) -> (usize, i64) { match *self { RuleDay::Julian1WithoutLeap(year_day) => { let year_day = year_day as i64; let month = match CUMUL_DAY_IN_MONTHS_NORMAL_YEAR.binary_search(&(year_day - 1)) { Ok(x) => x + 1, Err(x) => x, }; let month_day = year_day - CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1]; (month, month_day) } RuleDay::Julian0WithLeap(year_day) => { let leap = is_leap_year(year) as i64; let cumul_day_in_months = [ 0, 31, 59 + leap, 90 + leap, 120 + leap, 151 + leap, 181 + leap, 212 + leap, 243 + leap, 273 + leap, 304 + leap, 334 + leap, ]; let year_day = year_day as i64; let month = match cumul_day_in_months.binary_search(&year_day) { Ok(x) => x + 1, Err(x) => x, }; let month_day = 1 + year_day - cumul_day_in_months[month - 1]; (month, month_day) } RuleDay::MonthWeekday { month: rule_month, week, week_day } => { let leap = is_leap_year(year) as i64; let month = rule_month as usize; let mut day_in_month = DAY_IN_MONTHS_NORMAL_YEAR[month - 1]; if month == 2 { day_in_month += leap; } let week_day_of_first_month_day = (4 + days_since_unix_epoch(year, month, 1)).rem_euclid(DAYS_PER_WEEK); let first_week_day_occurence_in_month = 1 + (week_day as i64 - week_day_of_first_month_day).rem_euclid(DAYS_PER_WEEK); let mut month_day = first_week_day_occurence_in_month + (week as i64 - 1) * DAYS_PER_WEEK; if month_day > day_in_month { month_day -= DAYS_PER_WEEK } (month, month_day) } } } /// Returns the UTC Unix time in seconds associated to the transition date for the provided year fn unix_time(&self, year: i32, day_time_in_utc: i64) -> i64 { let (month, month_day) = self.transition_date(year); days_since_unix_epoch(year, month, month_day) * SECONDS_PER_DAY + day_time_in_utc } } /// UTC date time exprimed in the [proleptic gregorian calendar](https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar) #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)] pub(crate) struct UtcDateTime { /// Year pub(crate) year: i32, /// Month in `[1, 12]` pub(crate) month: u8, /// Day of the month in `[1, 31]` pub(crate) month_day: u8, /// Hours since midnight in `[0, 23]` pub(crate) hour: u8, /// Minutes in `[0, 59]` pub(crate) minute: u8, /// Seconds in `[0, 60]`, with a possible leap second pub(crate) second: u8, } impl UtcDateTime { /// Construct a UTC date time from a Unix time in seconds and nanoseconds pub(crate) fn from_timespec(unix_time: i64) -> Result { let seconds = match unix_time.checked_sub(UNIX_OFFSET_SECS) { Some(seconds) => seconds, None => return Err(Error::OutOfRange("out of range operation")), }; let mut remaining_days = seconds / SECONDS_PER_DAY; let mut remaining_seconds = seconds % SECONDS_PER_DAY; if remaining_seconds < 0 { remaining_seconds += SECONDS_PER_DAY; remaining_days -= 1; } let mut cycles_400_years = remaining_days / DAYS_PER_400_YEARS; remaining_days %= DAYS_PER_400_YEARS; if remaining_days < 0 { remaining_days += DAYS_PER_400_YEARS; cycles_400_years -= 1; } let cycles_100_years = Ord::min(remaining_days / DAYS_PER_100_YEARS, 3); remaining_days -= cycles_100_years * DAYS_PER_100_YEARS; let cycles_4_years = Ord::min(remaining_days / DAYS_PER_4_YEARS, 24); remaining_days -= cycles_4_years * DAYS_PER_4_YEARS; let remaining_years = Ord::min(remaining_days / DAYS_PER_NORMAL_YEAR, 3); remaining_days -= remaining_years * DAYS_PER_NORMAL_YEAR; let mut year = OFFSET_YEAR + remaining_years + cycles_4_years * 4 + cycles_100_years * 100 + cycles_400_years * 400; let mut month = 0; while month < DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH.len() { let days = DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH[month]; if remaining_days < days { break; } remaining_days -= days; month += 1; } month += 2; if month >= MONTHS_PER_YEAR as usize { month -= MONTHS_PER_YEAR as usize; year += 1; } month += 1; let month_day = 1 + remaining_days; let hour = remaining_seconds / SECONDS_PER_HOUR; let minute = (remaining_seconds / SECONDS_PER_MINUTE) % MINUTES_PER_HOUR; let second = remaining_seconds % SECONDS_PER_MINUTE; let year = match year >= i32::min_value() as i64 && year <= i32::max_value() as i64 { true => year as i32, false => return Err(Error::OutOfRange("i64 is out of range for i32")), }; Ok(Self { year, month: month as u8, month_day: month_day as u8, hour: hour as u8, minute: minute as u8, second: second as u8, }) } } /// Number of nanoseconds in one second const NANOSECONDS_PER_SECOND: u32 = 1_000_000_000; /// Number of seconds in one minute const SECONDS_PER_MINUTE: i64 = 60; /// Number of seconds in one hour const SECONDS_PER_HOUR: i64 = 3600; /// Number of minutes in one hour const MINUTES_PER_HOUR: i64 = 60; /// Number of months in one year const MONTHS_PER_YEAR: i64 = 12; /// Number of days in a normal year const DAYS_PER_NORMAL_YEAR: i64 = 365; /// Number of days in 4 years (including 1 leap year) const DAYS_PER_4_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 4 + 1; /// Number of days in 100 years (including 24 leap years) const DAYS_PER_100_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 100 + 24; /// Number of days in 400 years (including 97 leap years) const DAYS_PER_400_YEARS: i64 = DAYS_PER_NORMAL_YEAR * 400 + 97; /// Unix time at `2000-03-01T00:00:00Z` (Wednesday) const UNIX_OFFSET_SECS: i64 = 951868800; /// Offset year const OFFSET_YEAR: i64 = 2000; /// Month days in a leap year from March const DAY_IN_MONTHS_LEAP_YEAR_FROM_MARCH: [i64; 12] = [31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29]; /// Compute the number of days since Unix epoch (`1970-01-01T00:00:00Z`). /// /// ## Inputs /// /// * `year`: Year /// * `month`: Month in `[1, 12]` /// * `month_day`: Day of the month in `[1, 31]` pub(crate) const fn days_since_unix_epoch(year: i32, month: usize, month_day: i64) -> i64 { let is_leap_year = is_leap_year(year); let year = year as i64; let mut result = (year - 1970) * 365; if year >= 1970 { result += (year - 1968) / 4; result -= (year - 1900) / 100; result += (year - 1600) / 400; if is_leap_year && month < 3 { result -= 1; } } else { result += (year - 1972) / 4; result -= (year - 2000) / 100; result += (year - 2000) / 400; if is_leap_year && month >= 3 { result += 1; } } result += CUMUL_DAY_IN_MONTHS_NORMAL_YEAR[month - 1] + month_day - 1; result } /// Check if a year is a leap year pub(crate) const fn is_leap_year(year: i32) -> bool { year % 400 == 0 || (year % 4 == 0 && year % 100 != 0) } #[cfg(test)] mod tests { use super::super::timezone::Transition; use super::super::{Error, TimeZone}; use super::{AlternateTime, LocalTimeType, RuleDay, TransitionRule}; #[test] fn test_quoted() -> Result<(), Error> { let transition_rule = TransitionRule::from_tz_string(b"<-03>+3<+03>-3,J1,J365", false)?; assert_eq!( transition_rule, AlternateTime::new( LocalTimeType::new(-10800, false, Some(b"-03"))?, LocalTimeType::new(10800, true, Some(b"+03"))?, RuleDay::julian_1(1)?, 7200, RuleDay::julian_1(365)?, 7200, )? .into() ); Ok(()) } #[test] fn test_full() -> Result<(), Error> { let tz_string = b"NZST-12:00:00NZDT-13:00:00,M10.1.0/02:00:00,M3.3.0/02:00:00"; let transition_rule = TransitionRule::from_tz_string(tz_string, false)?; assert_eq!( transition_rule, AlternateTime::new( LocalTimeType::new(43200, false, Some(b"NZST"))?, LocalTimeType::new(46800, true, Some(b"NZDT"))?, RuleDay::month_weekday(10, 1, 0)?, 7200, RuleDay::month_weekday(3, 3, 0)?, 7200, )? .into() ); Ok(()) } #[test] fn test_negative_dst() -> Result<(), Error> { let tz_string = b"IST-1GMT0,M10.5.0,M3.5.0/1"; let transition_rule = TransitionRule::from_tz_string(tz_string, false)?; assert_eq!( transition_rule, AlternateTime::new( LocalTimeType::new(3600, false, Some(b"IST"))?, LocalTimeType::new(0, true, Some(b"GMT"))?, RuleDay::month_weekday(10, 5, 0)?, 7200, RuleDay::month_weekday(3, 5, 0)?, 3600, )? .into() ); Ok(()) } #[test] fn test_negative_hour() -> Result<(), Error> { let tz_string = b"<-03>3<-02>,M3.5.0/-2,M10.5.0/-1"; assert!(TransitionRule::from_tz_string(tz_string, false).is_err()); assert_eq!( TransitionRule::from_tz_string(tz_string, true)?, AlternateTime::new( LocalTimeType::new(-10800, false, Some(b"-03"))?, LocalTimeType::new(-7200, true, Some(b"-02"))?, RuleDay::month_weekday(3, 5, 0)?, -7200, RuleDay::month_weekday(10, 5, 0)?, -3600, )? .into() ); Ok(()) } #[test] fn test_all_year_dst() -> Result<(), Error> { let tz_string = b"EST5EDT,0/0,J365/25"; assert!(TransitionRule::from_tz_string(tz_string, false).is_err()); assert_eq!( TransitionRule::from_tz_string(tz_string, true)?, AlternateTime::new( LocalTimeType::new(-18000, false, Some(b"EST"))?, LocalTimeType::new(-14400, true, Some(b"EDT"))?, RuleDay::julian_0(0)?, 0, RuleDay::julian_1(365)?, 90000, )? .into() ); Ok(()) } #[test] fn test_v3_file() -> Result<(), Error> { let bytes = b"TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x04\0\0\x1c\x20\0\0IST\0TZif3\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\0\0\0\0\x01\0\0\0\x01\0\0\0\x04\0\0\0\0\x7f\xe8\x17\x80\0\0\0\x1c\x20\0\0IST\0\x01\x01\x0aIST-2IDT,M3.4.4/26,M10.5.0\x0a"; let time_zone = TimeZone::from_tz_data(bytes)?; let time_zone_result = TimeZone::new( vec![Transition::new(2145916800, 0)], vec![LocalTimeType::new(7200, false, Some(b"IST"))?], Vec::new(), Some(TransitionRule::from(AlternateTime::new( LocalTimeType::new(7200, false, Some(b"IST"))?, LocalTimeType::new(10800, true, Some(b"IDT"))?, RuleDay::month_weekday(3, 4, 4)?, 93600, RuleDay::month_weekday(10, 5, 0)?, 7200, )?)), )?; assert_eq!(time_zone, time_zone_result); Ok(()) } #[test] fn test_rule_day() -> Result<(), Error> { let rule_day_j1 = RuleDay::julian_1(60)?; assert_eq!(rule_day_j1.transition_date(2000), (3, 1)); assert_eq!(rule_day_j1.transition_date(2001), (3, 1)); assert_eq!(rule_day_j1.unix_time(2000, 43200), 951912000); let rule_day_j0 = RuleDay::julian_0(59)?; assert_eq!(rule_day_j0.transition_date(2000), (2, 29)); assert_eq!(rule_day_j0.transition_date(2001), (3, 1)); assert_eq!(rule_day_j0.unix_time(2000, 43200), 951825600); let rule_day_mwd = RuleDay::month_weekday(2, 5, 2)?; assert_eq!(rule_day_mwd.transition_date(2000), (2, 29)); assert_eq!(rule_day_mwd.transition_date(2001), (2, 27)); assert_eq!(rule_day_mwd.unix_time(2000, 43200), 951825600); assert_eq!(rule_day_mwd.unix_time(2001, 43200), 983275200); Ok(()) } #[test] fn test_transition_rule() -> Result<(), Error> { let transition_rule_fixed = TransitionRule::from(LocalTimeType::new(-36000, false, None)?); assert_eq!(transition_rule_fixed.find_local_time_type(0)?.offset(), -36000); let transition_rule_dst = TransitionRule::from(AlternateTime::new( LocalTimeType::new(43200, false, Some(b"NZST"))?, LocalTimeType::new(46800, true, Some(b"NZDT"))?, RuleDay::month_weekday(10, 1, 0)?, 7200, RuleDay::month_weekday(3, 3, 0)?, 7200, )?); assert_eq!(transition_rule_dst.find_local_time_type(953384399)?.offset(), 46800); assert_eq!(transition_rule_dst.find_local_time_type(953384400)?.offset(), 43200); assert_eq!(transition_rule_dst.find_local_time_type(970322399)?.offset(), 43200); assert_eq!(transition_rule_dst.find_local_time_type(970322400)?.offset(), 46800); let transition_rule_negative_dst = TransitionRule::from(AlternateTime::new( LocalTimeType::new(3600, false, Some(b"IST"))?, LocalTimeType::new(0, true, Some(b"GMT"))?, RuleDay::month_weekday(10, 5, 0)?, 7200, RuleDay::month_weekday(3, 5, 0)?, 3600, )?); assert_eq!(transition_rule_negative_dst.find_local_time_type(954032399)?.offset(), 0); assert_eq!(transition_rule_negative_dst.find_local_time_type(954032400)?.offset(), 3600); assert_eq!(transition_rule_negative_dst.find_local_time_type(972781199)?.offset(), 3600); assert_eq!(transition_rule_negative_dst.find_local_time_type(972781200)?.offset(), 0); let transition_rule_negative_time_1 = TransitionRule::from(AlternateTime::new( LocalTimeType::new(0, false, None)?, LocalTimeType::new(0, true, None)?, RuleDay::julian_0(100)?, 0, RuleDay::julian_0(101)?, -86500, )?); assert!(transition_rule_negative_time_1.find_local_time_type(8639899)?.is_dst()); assert!(!transition_rule_negative_time_1.find_local_time_type(8639900)?.is_dst()); assert!(!transition_rule_negative_time_1.find_local_time_type(8639999)?.is_dst()); assert!(transition_rule_negative_time_1.find_local_time_type(8640000)?.is_dst()); let transition_rule_negative_time_2 = TransitionRule::from(AlternateTime::new( LocalTimeType::new(-10800, false, Some(b"-03"))?, LocalTimeType::new(-7200, true, Some(b"-02"))?, RuleDay::month_weekday(3, 5, 0)?, -7200, RuleDay::month_weekday(10, 5, 0)?, -3600, )?); assert_eq!( transition_rule_negative_time_2.find_local_time_type(954032399)?.offset(), -10800 ); assert_eq!( transition_rule_negative_time_2.find_local_time_type(954032400)?.offset(), -7200 ); assert_eq!( transition_rule_negative_time_2.find_local_time_type(972781199)?.offset(), -7200 ); assert_eq!( transition_rule_negative_time_2.find_local_time_type(972781200)?.offset(), -10800 ); let transition_rule_all_year_dst = TransitionRule::from(AlternateTime::new( LocalTimeType::new(-18000, false, Some(b"EST"))?, LocalTimeType::new(-14400, true, Some(b"EDT"))?, RuleDay::julian_0(0)?, 0, RuleDay::julian_1(365)?, 90000, )?); assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702799)?.offset(), -14400); assert_eq!(transition_rule_all_year_dst.find_local_time_type(946702800)?.offset(), -14400); Ok(()) } #[test] fn test_transition_rule_overflow() -> Result<(), Error> { let transition_rule_1 = TransitionRule::from(AlternateTime::new( LocalTimeType::new(-1, false, None)?, LocalTimeType::new(-1, true, None)?, RuleDay::julian_1(365)?, 0, RuleDay::julian_1(1)?, 0, )?); let transition_rule_2 = TransitionRule::from(AlternateTime::new( LocalTimeType::new(1, false, None)?, LocalTimeType::new(1, true, None)?, RuleDay::julian_1(365)?, 0, RuleDay::julian_1(1)?, 0, )?); let min_unix_time = -67768100567971200; let max_unix_time = 67767976233532799; assert!(matches!( transition_rule_1.find_local_time_type(min_unix_time), Err(Error::OutOfRange(_)) )); assert!(matches!( transition_rule_2.find_local_time_type(max_unix_time), Err(Error::OutOfRange(_)) )); Ok(()) } }