/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* atan(x) * Method * 1. Reduce x to positive by atan(x) = -atan(-x). * 2. According to the integer k=4t+0.25 chopped, t=x, the argument * is further reduced to one of the following intervals and the * arctangent of t is evaluated by the corresponding formula: * * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ use super::fabs; use core::f64; const ATANHI: [f64; 4] = [ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ ]; const ATANLO: [f64; 4] = [ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ ]; const AT: [f64; 11] = [ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ ]; /// Arctangent (f64) /// /// Computes the inverse tangent (arc tangent) of the input value. /// Returns a value in radians, in the range of -pi/2 to pi/2. #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn atan(x: f64) -> f64 { let mut x = x; let mut ix = (x.to_bits() >> 32) as u32; let sign = ix >> 31; ix &= 0x7fff_ffff; if ix >= 0x4410_0000 { if x.is_nan() { return x; } let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f return if sign != 0 { -z } else { z }; } let id = if ix < 0x3fdc_0000 { /* |x| < 0.4375 */ if ix < 0x3e40_0000 { /* |x| < 2^-27 */ if ix < 0x0010_0000 { /* raise underflow for subnormal x */ force_eval!(x as f32); } return x; } -1 } else { x = fabs(x); if ix < 0x3ff30000 { /* |x| < 1.1875 */ if ix < 0x3fe60000 { /* 7/16 <= |x| < 11/16 */ x = (2. * x - 1.) / (2. + x); 0 } else { /* 11/16 <= |x| < 19/16 */ x = (x - 1.) / (x + 1.); 1 } } else if ix < 0x40038000 { /* |x| < 2.4375 */ x = (x - 1.5) / (1. + 1.5 * x); 2 } else { /* 2.4375 <= |x| < 2^66 */ x = -1. / x; 3 } }; let z = x * x; let w = z * z; /* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */ let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10]))))); let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9])))); if id < 0 { return x - x * (s1 + s2); } let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x); if sign != 0 { -z } else { z } } #[cfg(test)] mod tests { use super::atan; use core::f64; #[test] fn sanity_check() { for (input, answer) in [ (3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6), (1.0, f64::consts::FRAC_PI_4), (3.0_f64.sqrt(), f64::consts::FRAC_PI_3), (-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6), (-1.0, -f64::consts::FRAC_PI_4), (-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3), ] .iter() { assert!( (atan(*input) - answer) / answer < 1e-5, "\natan({:.4}/16) = {:.4}, actual: {}", input * 16.0, answer, atan(*input) ); } } #[test] fn zero() { assert_eq!(atan(0.0), 0.0); } #[test] fn infinity() { assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2); } #[test] fn minus_infinity() { assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2); } #[test] fn nan() { assert!(atan(f64::NAN).is_nan()); } }