#![allow(unreachable_code)] use core::f64; const TOINT: f64 = 1. / f64::EPSILON; /// Ceil (f64) /// /// Finds the nearest integer greater than or equal to `x`. #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn ceil(x: f64) -> f64 { // On wasm32 we know that LLVM's intrinsic will compile to an optimized // `f64.ceil` native instruction, so we can leverage this for both code size // and speed. llvm_intrinsically_optimized! { #[cfg(target_arch = "wasm32")] { return unsafe { ::core::intrinsics::ceilf64(x) } } } #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] { //use an alternative implementation on x86, because the //main implementation fails with the x87 FPU used by //debian i386, probablly due to excess precision issues. //basic implementation taken from https://github.com/rust-lang/libm/issues/219 use super::fabs; if fabs(x).to_bits() < 4503599627370496.0_f64.to_bits() { let truncated = x as i64 as f64; if truncated < x { return truncated + 1.0; } else { return truncated; } } else { return x; } } let u: u64 = x.to_bits(); let e: i64 = (u >> 52 & 0x7ff) as i64; let y: f64; if e >= 0x3ff + 52 || x == 0. { return x; } // y = int(x) - x, where int(x) is an integer neighbor of x y = if (u >> 63) != 0 { x - TOINT + TOINT - x } else { x + TOINT - TOINT - x }; // special case because of non-nearest rounding modes if e < 0x3ff { force_eval!(y); return if (u >> 63) != 0 { -0. } else { 1. }; } if y < 0. { x + y + 1. } else { x + y } } #[cfg(test)] mod tests { use super::*; use core::f64::*; #[test] fn sanity_check() { assert_eq!(ceil(1.1), 2.0); assert_eq!(ceil(2.9), 3.0); } /// The spec: https://en.cppreference.com/w/cpp/numeric/math/ceil #[test] fn spec_tests() { // Not Asserted: that the current rounding mode has no effect. assert!(ceil(NAN).is_nan()); for f in [0.0, -0.0, INFINITY, NEG_INFINITY].iter().copied() { assert_eq!(ceil(f), f); } } }