/* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */ /* * ==================================================== * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* exp(x) * Returns the exponential of x. * * Method * 1. Argument reduction: * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. * Given x, find r and integer k such that * * x = k*ln2 + r, |r| <= 0.5*ln2. * * Here r will be represented as r = hi-lo for better * accuracy. * * 2. Approximation of exp(r) by a special rational function on * the interval [0,0.34658]: * Write * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... * We use a special Remez algorithm on [0,0.34658] to generate * a polynomial of degree 5 to approximate R. The maximum error * of this polynomial approximation is bounded by 2**-59. In * other words, * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 * (where z=r*r, and the values of P1 to P5 are listed below) * and * | 5 | -59 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 * | | * The computation of exp(r) thus becomes * 2*r * exp(r) = 1 + ---------- * R(r) - r * r*c(r) * = 1 + r + ----------- (for better accuracy) * 2 - c(r) * where * 2 4 10 * c(r) = r - (P1*r + P2*r + ... + P5*r ). * * 3. Scale back to obtain exp(x): * From step 1, we have * exp(x) = 2^k * exp(r) * * Special cases: * exp(INF) is INF, exp(NaN) is NaN; * exp(-INF) is 0, and * for finite argument, only exp(0)=1 is exact. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Misc. info. * For IEEE double * if x > 709.782712893383973096 then exp(x) overflows * if x < -745.133219101941108420 then exp(x) underflows */ use super::scalbn; const HALF: [f64; 2] = [0.5, -0.5]; const LN2HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */ const LN2LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */ const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ const P1: f64 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */ const P2: f64 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */ const P3: f64 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */ const P4: f64 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */ const P5: f64 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ /// Exponential, base *e* (f64) /// /// Calculate the exponential of `x`, that is, *e* raised to the power `x` /// (where *e* is the base of the natural system of logarithms, approximately 2.71828). #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn exp(mut x: f64) -> f64 { let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023 let x1p_149 = f64::from_bits(0x36a0000000000000); // 0x1p-149 === 2 ^ -149 let hi: f64; let lo: f64; let c: f64; let xx: f64; let y: f64; let k: i32; let sign: i32; let mut hx: u32; hx = (x.to_bits() >> 32) as u32; sign = (hx >> 31) as i32; hx &= 0x7fffffff; /* high word of |x| */ /* special cases */ if hx >= 0x4086232b { /* if |x| >= 708.39... */ if x.is_nan() { return x; } if x > 709.782712893383973096 { /* overflow if x!=inf */ x *= x1p1023; return x; } if x < -708.39641853226410622 { /* underflow if x!=-inf */ force_eval!((-x1p_149 / x) as f32); if x < -745.13321910194110842 { return 0.; } } } /* argument reduction */ if hx > 0x3fd62e42 { /* if |x| > 0.5 ln2 */ if hx >= 0x3ff0a2b2 { /* if |x| >= 1.5 ln2 */ k = (INVLN2 * x + i!(HALF, sign as usize)) as i32; } else { k = 1 - sign - sign; } hi = x - k as f64 * LN2HI; /* k*ln2hi is exact here */ lo = k as f64 * LN2LO; x = hi - lo; } else if hx > 0x3e300000 { /* if |x| > 2**-28 */ k = 0; hi = x; lo = 0.; } else { /* inexact if x!=0 */ force_eval!(x1p1023 + x); return 1. + x; } /* x is now in primary range */ xx = x * x; c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5)))); y = 1. + (x * c / (2. - c) - lo + hi); if k == 0 { y } else { scalbn(y, k) } }