/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ /* * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ use super::{fabsf, j0f, j1f, logf, y0f, y1f}; pub fn jnf(n: i32, mut x: f32) -> f32 { let mut ix: u32; let mut nm1: i32; let mut sign: bool; let mut i: i32; let mut a: f32; let mut b: f32; let mut temp: f32; ix = x.to_bits(); sign = (ix >> 31) != 0; ix &= 0x7fffffff; if ix > 0x7f800000 { /* nan */ return x; } /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ if n == 0 { return j0f(x); } if n < 0 { nm1 = -(n + 1); x = -x; sign = !sign; } else { nm1 = n - 1; } if nm1 == 0 { return j1f(x); } sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */ x = fabsf(x); if ix == 0 || ix == 0x7f800000 { /* if x is 0 or inf */ b = 0.0; } else if (nm1 as f32) < x { /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ a = j0f(x); b = j1f(x); i = 0; while i < nm1 { i += 1; temp = b; b = b * (2.0 * (i as f32) / x) - a; a = temp; } } else { if ix < 0x35800000 { /* x < 2**-20 */ /* x is tiny, return the first Taylor expansion of J(n,x) * J(n,x) = 1/n!*(x/2)^n - ... */ if nm1 > 8 { /* underflow */ nm1 = 8; } temp = 0.5 * x; b = temp; a = 1.0; i = 2; while i <= nm1 + 1 { a *= i as f32; /* a = n! */ b *= temp; /* b = (x/2)^n */ i += 1; } b = b / a; } else { /* use backward recurrence */ /* x x^2 x^2 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... * 2n - 2(n+1) - 2(n+2) * * 1 1 1 * (for large x) = ---- ------ ------ ..... * 2n 2(n+1) 2(n+2) * -- - ------ - ------ - * x x x * * Let w = 2n/x and h=2/x, then the above quotient * is equal to the continued fraction: * 1 * = ----------------------- * 1 * w - ----------------- * 1 * w+h - --------- * w+2h - ... * * To determine how many terms needed, let * Q(0) = w, Q(1) = w(w+h) - 1, * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), * When Q(k) > 1e4 good for single * When Q(k) > 1e9 good for double * When Q(k) > 1e17 good for quadruple */ /* determine k */ let mut t: f32; let mut q0: f32; let mut q1: f32; let mut w: f32; let h: f32; let mut z: f32; let mut tmp: f32; let nf: f32; let mut k: i32; nf = (nm1 as f32) + 1.0; w = 2.0 * (nf as f32) / x; h = 2.0 / x; z = w + h; q0 = w; q1 = w * z - 1.0; k = 1; while q1 < 1.0e4 { k += 1; z += h; tmp = z * q1 - q0; q0 = q1; q1 = tmp; } t = 0.0; i = k; while i >= 0 { t = 1.0 / (2.0 * ((i as f32) + nf) / x - t); i -= 1; } a = t; b = 1.0; /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) * Hence, if n*(log(2n/x)) > ... * single 8.8722839355e+01 * double 7.09782712893383973096e+02 * long double 1.1356523406294143949491931077970765006170e+04 * then recurrent value may overflow and the result is * likely underflow to zero */ tmp = nf * logf(fabsf(w)); if tmp < 88.721679688 { i = nm1; while i > 0 { temp = b; b = 2.0 * (i as f32) * b / x - a; a = temp; i -= 1; } } else { i = nm1; while i > 0 { temp = b; b = 2.0 * (i as f32) * b / x - a; a = temp; /* scale b to avoid spurious overflow */ let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60 if b > x1p60 { a /= b; t /= b; b = 1.0; } i -= 1; } } z = j0f(x); w = j1f(x); if fabsf(z) >= fabsf(w) { b = t * z / b; } else { b = t * w / a; } } } if sign { -b } else { b } } pub fn ynf(n: i32, x: f32) -> f32 { let mut ix: u32; let mut ib: u32; let nm1: i32; let mut sign: bool; let mut i: i32; let mut a: f32; let mut b: f32; let mut temp: f32; ix = x.to_bits(); sign = (ix >> 31) != 0; ix &= 0x7fffffff; if ix > 0x7f800000 { /* nan */ return x; } if sign && ix != 0 { /* x < 0 */ return 0.0 / 0.0; } if ix == 0x7f800000 { return 0.0; } if n == 0 { return y0f(x); } if n < 0 { nm1 = -(n + 1); sign = (n & 1) != 0; } else { nm1 = n - 1; sign = false; } if nm1 == 0 { if sign { return -y1f(x); } else { return y1f(x); } } a = y0f(x); b = y1f(x); /* quit if b is -inf */ ib = b.to_bits(); i = 0; while i < nm1 && ib != 0xff800000 { i += 1; temp = b; b = (2.0 * (i as f32) / x) * b - a; ib = b.to_bits(); a = temp; } if sign { -b } else { b } }