/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunSoft, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== * */ /* lgamma_r(x, signgamp) * Reentrant version of the logarithm of the Gamma function * with user provide pointer for the sign of Gamma(x). * * Method: * 1. Argument Reduction for 0 < x <= 8 * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may * reduce x to a number in [1.5,2.5] by * lgamma(1+s) = log(s) + lgamma(s) * for example, * lgamma(7.3) = log(6.3) + lgamma(6.3) * = log(6.3*5.3) + lgamma(5.3) * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) * 2. Polynomial approximation of lgamma around its * minimun ymin=1.461632144968362245 to maintain monotonicity. * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use * Let z = x-ymin; * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) * where * poly(z) is a 14 degree polynomial. * 2. Rational approximation in the primary interval [2,3] * We use the following approximation: * s = x-2.0; * lgamma(x) = 0.5*s + s*P(s)/Q(s) * with accuracy * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 * Our algorithms are based on the following observation * * zeta(2)-1 2 zeta(3)-1 3 * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... * 2 3 * * where Euler = 0.5771... is the Euler constant, which is very * close to 0.5. * * 3. For x>=8, we have * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... * (better formula: * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) * Let z = 1/x, then we approximation * f(z) = lgamma(x) - (x-0.5)(log(x)-1) * by * 3 5 11 * w = w0 + w1*z + w2*z + w3*z + ... + w6*z * where * |w - f(z)| < 2**-58.74 * * 4. For negative x, since (G is gamma function) * -x*G(-x)*G(x) = PI/sin(PI*x), * we have * G(x) = PI/(sin(PI*x)*(-x)*G(-x)) * since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0 * Hence, for x<0, signgam = sign(sin(PI*x)) and * lgamma(x) = log(|Gamma(x)|) * = log(PI/(|x*sin(PI*x)|)) - lgamma(-x); * Note: one should avoid compute PI*(-x) directly in the * computation of sin(PI*(-x)). * * 5. Special Cases * lgamma(2+s) ~ s*(1-Euler) for tiny s * lgamma(1) = lgamma(2) = 0 * lgamma(x) ~ -log(|x|) for tiny x * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero * lgamma(inf) = inf * lgamma(-inf) = inf (bug for bug compatible with C99!?) * */ use super::{floor, k_cos, k_sin, log}; const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */ const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */ const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */ const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */ const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */ const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */ const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */ const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */ const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */ const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */ const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */ const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */ const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */ const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */ const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */ /* tt = -(tail of TF) */ const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */ const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */ const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */ const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */ const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */ const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */ const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */ const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */ const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */ const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */ const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */ const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */ const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */ const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */ const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */ const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */ const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */ const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */ const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */ const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */ const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */ const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */ const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */ const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */ const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */ const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */ const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */ const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */ const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */ const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */ const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */ const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */ const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */ const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */ const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */ const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */ const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */ const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */ const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */ const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */ const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */ const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */ const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */ const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */ const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */ const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */ const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ /* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */ fn sin_pi(mut x: f64) -> f64 { let mut n: i32; /* spurious inexact if odd int */ x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */ n = (x * 4.0) as i32; n = (n + 1) / 2; x -= (n as f64) * 0.5; x *= PI; match n { 1 => k_cos(x, 0.0), 2 => k_sin(-x, 0.0, 0), 3 => -k_cos(x, 0.0), 0 | _ => k_sin(x, 0.0, 0), } } pub fn lgamma_r(mut x: f64) -> (f64, i32) { let u: u64 = x.to_bits(); let mut t: f64; let y: f64; let mut z: f64; let nadj: f64; let p: f64; let p1: f64; let p2: f64; let p3: f64; let q: f64; let mut r: f64; let w: f64; let ix: u32; let sign: bool; let i: i32; let mut signgam: i32; /* purge off +-inf, NaN, +-0, tiny and negative arguments */ signgam = 1; sign = (u >> 63) != 0; ix = ((u >> 32) as u32) & 0x7fffffff; if ix >= 0x7ff00000 { return (x * x, signgam); } if ix < (0x3ff - 70) << 20 { /* |x|<2**-70, return -log(|x|) */ if sign { x = -x; signgam = -1; } return (-log(x), signgam); } if sign { x = -x; t = sin_pi(x); if t == 0.0 { /* -integer */ return (1.0 / (x - x), signgam); } if t > 0.0 { signgam = -1; } else { t = -t; } nadj = log(PI / (t * x)); } else { nadj = 0.0; } /* purge off 1 and 2 */ if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 { r = 0.0; } /* for x < 2.0 */ else if ix < 0x40000000 { if ix <= 0x3feccccc { /* lgamma(x) = lgamma(x+1)-log(x) */ r = -log(x); if ix >= 0x3FE76944 { y = 1.0 - x; i = 0; } else if ix >= 0x3FCDA661 { y = x - (TC - 1.0); i = 1; } else { y = x; i = 2; } } else { r = 0.0; if ix >= 0x3FFBB4C3 { /* [1.7316,2] */ y = 2.0 - x; i = 0; } else if ix >= 0x3FF3B4C4 { /* [1.23,1.73] */ y = x - TC; i = 1; } else { y = x - 1.0; i = 2; } } match i { 0 => { z = y * y; p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10)))); p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11))))); p = y * p1 + p2; r += p - 0.5 * y; } 1 => { z = y * y; w = z * y; p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */ p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13))); p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14))); p = z * p1 - (TT - w * (p2 + y * p3)); r += TF + p; } 2 => { p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5))))); p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5)))); r += -0.5 * y + p1 / p2; } #[cfg(debug_assertions)] _ => unreachable!(), #[cfg(not(debug_assertions))] _ => {} } } else if ix < 0x40200000 { /* x < 8.0 */ i = x as i32; y = x - (i as f64); p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6)))))); q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6))))); r = 0.5 * y + p / q; z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ // TODO: In C, this was implemented using switch jumps with fallthrough. // Does this implementation have performance problems? if i >= 7 { z *= y + 6.0; } if i >= 6 { z *= y + 5.0; } if i >= 5 { z *= y + 4.0; } if i >= 4 { z *= y + 3.0; } if i >= 3 { z *= y + 2.0; r += log(z); } } else if ix < 0x43900000 { /* 8.0 <= x < 2**58 */ t = log(x); z = 1.0 / x; y = z * z; w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6))))); r = (x - 0.5) * (t - 1.0) + w; } else { /* 2**58 <= x <= inf */ r = x * (log(x) - 1.0); } if sign { r = nadj - r; } return (r, signgam); }