/* origin: FreeBSD /usr/src/lib/msun/src/s_log1p.c */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* double log1p(double x) * Return the natural logarithm of 1+x. * * Method : * 1. Argument Reduction: find k and f such that * 1+x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * Note. If k=0, then f=x is exact. However, if k!=0, then f * may not be representable exactly. In that case, a correction * term is need. Let u=1+x rounded. Let c = (1+x)-u, then * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), * and add back the correction term c/u. * (Note: when x > 2**53, one can simply return log(x)) * * 2. Approximation of log(1+f): See log.c * * 3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c * * Special cases: * log1p(x) is NaN with signal if x < -1 (including -INF) ; * log1p(+INF) is +INF; log1p(-1) is -INF with signal; * log1p(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. * * Note: Assuming log() return accurate answer, the following * algorithm can be used to compute log1p(x) to within a few ULP: * * u = 1+x; * if(u==1.0) return x ; else * return log(u)*(x/(u-1.0)); * * See HP-15C Advanced Functions Handbook, p.193. */ use core::f64; const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */ const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */ const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn log1p(x: f64) -> f64 { let mut ui: u64 = x.to_bits(); let hfsq: f64; let mut f: f64 = 0.; let mut c: f64 = 0.; let s: f64; let z: f64; let r: f64; let w: f64; let t1: f64; let t2: f64; let dk: f64; let hx: u32; let mut hu: u32; let mut k: i32; hx = (ui >> 32) as u32; k = 1; if hx < 0x3fda827a || (hx >> 31) > 0 { /* 1+x < sqrt(2)+ */ if hx >= 0xbff00000 { /* x <= -1.0 */ if x == -1. { return x / 0.0; /* log1p(-1) = -inf */ } return (x - x) / 0.0; /* log1p(x<-1) = NaN */ } if hx << 1 < 0x3ca00000 << 1 { /* |x| < 2**-53 */ /* underflow if subnormal */ if (hx & 0x7ff00000) == 0 { force_eval!(x as f32); } return x; } if hx <= 0xbfd2bec4 { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ k = 0; c = 0.; f = x; } } else if hx >= 0x7ff00000 { return x; } if k > 0 { ui = (1. + x).to_bits(); hu = (ui >> 32) as u32; hu += 0x3ff00000 - 0x3fe6a09e; k = (hu >> 20) as i32 - 0x3ff; /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */ if k < 54 { c = if k >= 2 { 1. - (f64::from_bits(ui) - x) } else { x - (f64::from_bits(ui) - 1.) }; c /= f64::from_bits(ui); } else { c = 0.; } /* reduce u into [sqrt(2)/2, sqrt(2)] */ hu = (hu & 0x000fffff) + 0x3fe6a09e; ui = (hu as u64) << 32 | (ui & 0xffffffff); f = f64::from_bits(ui) - 1.; } hfsq = 0.5 * f * f; s = f / (2.0 + f); z = s * s; w = z * z; t1 = w * (LG2 + w * (LG4 + w * LG6)); t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); r = t2 + t1; dk = k as f64; s * (hfsq + r) + (dk * LN2_LO + c) - hfsq + f + dk * LN2_HI }