/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ /* * ==================================================== * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ // pow(x,y) return x**y // // n // Method: Let x = 2 * (1+f) // 1. Compute and return log2(x) in two pieces: // log2(x) = w1 + w2, // where w1 has 53-24 = 29 bit trailing zeros. // 2. Perform y*log2(x) = n+y' by simulating muti-precision // arithmetic, where |y'|<=0.5. // 3. Return x**y = 2**n*exp(y'*log2) // // Special cases: // 1. (anything) ** 0 is 1 // 2. 1 ** (anything) is 1 // 3. (anything except 1) ** NAN is NAN // 4. NAN ** (anything except 0) is NAN // 5. +-(|x| > 1) ** +INF is +INF // 6. +-(|x| > 1) ** -INF is +0 // 7. +-(|x| < 1) ** +INF is +0 // 8. +-(|x| < 1) ** -INF is +INF // 9. -1 ** +-INF is 1 // 10. +0 ** (+anything except 0, NAN) is +0 // 11. -0 ** (+anything except 0, NAN, odd integer) is +0 // 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero // 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero // 14. -0 ** (+odd integer) is -0 // 15. -0 ** (-odd integer) is -INF, raise divbyzero // 16. +INF ** (+anything except 0,NAN) is +INF // 17. +INF ** (-anything except 0,NAN) is +0 // 18. -INF ** (+odd integer) is -INF // 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) // 20. (anything) ** 1 is (anything) // 21. (anything) ** -1 is 1/(anything) // 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) // 23. (-anything except 0 and inf) ** (non-integer) is NAN // // Accuracy: // pow(x,y) returns x**y nearly rounded. In particular // pow(integer,integer) // always returns the correct integer provided it is // representable. // // Constants : // The hexadecimal values are the intended ones for the following // constants. The decimal values may be used, provided that the // compiler will convert from decimal to binary accurately enough // to produce the hexadecimal values shown. // use super::{fabs, get_high_word, scalbn, sqrt, with_set_high_word, with_set_low_word}; const BP: [f64; 2] = [1.0, 1.5]; const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ const HUGE: f64 = 1.0e300; const TINY: f64 = 1.0e-300; // poly coefs for (3/2)*(log(x)-2s-2/3*s**3: const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] pub fn pow(x: f64, y: f64) -> f64 { let t1: f64; let t2: f64; let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); let mut ix: i32 = (hx & 0x7fffffff) as i32; let iy: i32 = (hy & 0x7fffffff) as i32; /* x**0 = 1, even if x is NaN */ if ((iy as u32) | ly) == 0 { return 1.0; } /* 1**y = 1, even if y is NaN */ if hx == 0x3ff00000 && lx == 0 { return 1.0; } /* NaN if either arg is NaN */ if ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) || iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0) { return x + y; } /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ let mut yisint: i32 = 0; let mut k: i32; let mut j: i32; if hx < 0 { if iy >= 0x43400000 { yisint = 2; /* even integer y */ } else if iy >= 0x3ff00000 { k = (iy >> 20) - 0x3ff; /* exponent */ if k > 20 { j = (ly >> (52 - k)) as i32; if (j << (52 - k)) == (ly as i32) { yisint = 2 - (j & 1); } } else if ly == 0 { j = iy >> (20 - k); if (j << (20 - k)) == iy { yisint = 2 - (j & 1); } } } } if ly == 0 { /* special value of y */ if iy == 0x7ff00000 { /* y is +-inf */ return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { /* (-1)**+-inf is 1 */ 1.0 } else if ix >= 0x3ff00000 { /* (|x|>1)**+-inf = inf,0 */ if hy >= 0 { y } else { 0.0 } } else { /* (|x|<1)**+-inf = 0,inf */ if hy >= 0 { 0.0 } else { -y } }; } if iy == 0x3ff00000 { /* y is +-1 */ return if hy >= 0 { x } else { 1.0 / x }; } if hy == 0x40000000 { /* y is 2 */ return x * x; } if hy == 0x3fe00000 { /* y is 0.5 */ if hx >= 0 { /* x >= +0 */ return sqrt(x); } } } let mut ax: f64 = fabs(x); if lx == 0 { /* special value of x */ if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { /* x is +-0,+-inf,+-1 */ let mut z: f64 = ax; if hy < 0 { /* z = (1/|x|) */ z = 1.0 / z; } if hx < 0 { if ((ix - 0x3ff00000) | yisint) == 0 { z = (z - z) / (z - z); /* (-1)**non-int is NaN */ } else if yisint == 1 { z = -z; /* (x<0)**odd = -(|x|**odd) */ } } return z; } } let mut s: f64 = 1.0; /* sign of result */ if hx < 0 { if yisint == 0 { /* (x<0)**(non-int) is NaN */ return (x - x) / (x - x); } if yisint == 1 { /* (x<0)**(odd int) */ s = -1.0; } } /* |y| is HUGE */ if iy > 0x41e00000 { /* if |y| > 2**31 */ if iy > 0x43f00000 { /* if |y| > 2**64, must o/uflow */ if ix <= 0x3fefffff { return if hy < 0 { HUGE * HUGE } else { TINY * TINY }; } if ix >= 0x3ff00000 { return if hy > 0 { HUGE * HUGE } else { TINY * TINY }; } } /* over/underflow if x is not close to one */ if ix < 0x3fefffff { return if hy < 0 { s * HUGE * HUGE } else { s * TINY * TINY }; } if ix > 0x3ff00000 { return if hy > 0 { s * HUGE * HUGE } else { s * TINY * TINY }; } /* now |1-x| is TINY <= 2**-20, suffice to compute log(x) by x-x^2/2+x^3/3-x^4/4 */ let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ let v: f64 = t * IVLN2_L - w * IVLN2; t1 = with_set_low_word(u + v, 0); t2 = v - (t1 - u); } else { // double ss,s2,s_h,s_l,t_h,t_l; let mut n: i32 = 0; if ix < 0x00100000 { /* take care subnormal number */ ax *= TWO53; n -= 53; ix = get_high_word(ax) as i32; } n += (ix >> 20) - 0x3ff; j = ix & 0x000fffff; /* determine interval */ let k: i32; ix = j | 0x3ff00000; /* normalize ix */ if j <= 0x3988E { /* |x|> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), ); let t_l: f64 = ax - (t_h - i!(BP, k as usize)); let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); /* compute log(ax) */ let s2: f64 = ss * ss; let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + ss); let s2: f64 = s_h * s_h; let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); let t_l: f64 = r - ((t_h - 3.0) - s2); /* u+v = ss*(1+...) */ let u: f64 = s_h * t_h; let v: f64 = s_l * t_h + t_l * ss; /* 2/(3log2)*(ss+...) */ let p_h: f64 = with_set_low_word(u + v, 0); let p_l = v - (p_h - u); let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ let t: f64 = n as f64; t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0); t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); } /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ let y1: f64 = with_set_low_word(y, 0); let p_l: f64 = (y - y1) * t1 + y * t2; let mut p_h: f64 = y1 * t1; let z: f64 = p_l + p_h; let mut j: i32 = (z.to_bits() >> 32) as i32; let i: i32 = z.to_bits() as i32; // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); if j >= 0x40900000 { /* z >= 1024 */ if (j - 0x40900000) | i != 0 { /* if z > 1024 */ return s * HUGE * HUGE; /* overflow */ } if p_l + OVT > z - p_h { return s * HUGE * HUGE; /* overflow */ } } else if (j & 0x7fffffff) >= 0x4090cc00 { /* z <= -1075 */ // FIXME: instead of abs(j) use unsigned j if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { /* z < -1075 */ return s * TINY * TINY; /* underflow */ } if p_l <= z - p_h { return s * TINY * TINY; /* underflow */ } } /* compute 2**(p_h+p_l) */ let i: i32 = j & (0x7fffffff as i32); k = (i >> 20) - 0x3ff; let mut n: i32 = 0; if i > 0x3fe00000 { /* if |z| > 0.5, set n = [z+0.5] */ n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if j < 0 { n = -n; } p_h -= t; } let t: f64 = with_set_low_word(p_l + p_h, 0); let u: f64 = t * LG2_H; let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; let mut z: f64 = u + v; let w: f64 = v - (z - u); let t: f64 = z * z; let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); z = 1.0 - (r - z); j = get_high_word(z) as i32; j += n << 20; if (j >> 20) <= 0 { /* subnormal output */ z = scalbn(z, n); } else { z = with_set_high_word(z, j as u32); } s * z } #[cfg(test)] mod tests { extern crate core; use self::core::f64::consts::{E, PI}; use self::core::f64::{EPSILON, INFINITY, MAX, MIN, MIN_POSITIVE, NAN, NEG_INFINITY}; use super::pow; const POS_ZERO: &[f64] = &[0.0]; const NEG_ZERO: &[f64] = &[-0.0]; const POS_ONE: &[f64] = &[1.0]; const NEG_ONE: &[f64] = &[-1.0]; const POS_FLOATS: &[f64] = &[99.0 / 70.0, E, PI]; const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -E, -PI]; const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), MIN_POSITIVE, EPSILON]; const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -MIN_POSITIVE, -EPSILON]; const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, MAX]; const NEG_EVENS: &[f64] = &[MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0]; const POS_ODDS: &[f64] = &[3.0, 7.0]; const NEG_ODDS: &[f64] = &[-7.0, -3.0]; const NANS: &[f64] = &[NAN]; const POS_INF: &[f64] = &[INFINITY]; const NEG_INF: &[f64] = &[NEG_INFINITY]; const ALL: &[&[f64]] = &[ POS_ZERO, NEG_ZERO, NANS, NEG_SMALL_FLOATS, POS_SMALL_FLOATS, NEG_FLOATS, POS_FLOATS, NEG_EVENS, POS_EVENS, NEG_ODDS, POS_ODDS, NEG_INF, POS_INF, NEG_ONE, POS_ONE, ]; const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF]; const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF]; fn pow_test(base: f64, exponent: f64, expected: f64) { let res = pow(base, exponent); assert!( if expected.is_nan() { res.is_nan() } else { pow(base, exponent) == expected }, "{} ** {} was {} instead of {}", base, exponent, res, expected ); } fn test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) { sets.iter() .for_each(|s| s.iter().for_each(|val| pow_test(*val, exponent, expected))); } fn test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) { sets.iter() .for_each(|s| s.iter().for_each(|val| pow_test(base, *val, expected))); } fn test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) { sets.iter().for_each(|s| { s.iter().for_each(|val| { let exp = expected(*val); let res = computed(*val); #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] let exp = force_eval!(exp); #[cfg(all(target_arch = "x86", not(target_feature = "sse2")))] let res = force_eval!(res); assert!( if exp.is_nan() { res.is_nan() } else { exp == res }, "test for {} was {} instead of {}", val, res, exp ); }) }); } #[test] fn zero_as_exponent() { test_sets_as_base(ALL, 0.0, 1.0); test_sets_as_base(ALL, -0.0, 1.0); } #[test] fn one_as_base() { test_sets_as_exponent(1.0, ALL, 1.0); } #[test] fn nan_inputs() { // NAN as the base: // (NAN ^ anything *but 0* should be NAN) test_sets_as_exponent(NAN, &ALL[2..], NAN); // NAN as the exponent: // (anything *but 1* ^ NAN should be NAN) test_sets_as_base(&ALL[..(ALL.len() - 2)], NAN, NAN); } #[test] fn infinity_as_base() { // Positive Infinity as the base: // (+Infinity ^ positive anything but 0 and NAN should be +Infinity) test_sets_as_exponent(INFINITY, &POS[1..], INFINITY); // (+Infinity ^ negative anything except 0 and NAN should be 0.0) test_sets_as_exponent(INFINITY, &NEG[1..], 0.0); // Negative Infinity as the base: // (-Infinity ^ positive odd ints should be -Infinity) test_sets_as_exponent(NEG_INFINITY, &[POS_ODDS], NEG_INFINITY); // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything)) // We can lump in pos/neg odd ints here because they don't seem to // cause panics (div by zero) in release mode (I think). test_sets(ALL, &|v: f64| pow(NEG_INFINITY, v), &|v: f64| pow(-0.0, -v)); } #[test] fn infinity_as_exponent() { // Positive/Negative base greater than 1: // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the base) test_sets_as_base(&ALL[5..(ALL.len() - 2)], INFINITY, INFINITY); // (pos/neg > 1 ^ -Infinity should be 0.0) test_sets_as_base(&ALL[5..ALL.len() - 2], NEG_INFINITY, 0.0); // Positive/Negative base less than 1: let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS]; // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base) test_sets_as_base(base_below_one, INFINITY, 0.0); // (pos/neg < 1 ^ -Infinity should be Infinity) test_sets_as_base(base_below_one, NEG_INFINITY, INFINITY); // Positive/Negative 1 as the base: // (pos/neg 1 ^ Infinity should be 1) test_sets_as_base(&[NEG_ONE, POS_ONE], INFINITY, 1.0); // (pos/neg 1 ^ -Infinity should be 1) test_sets_as_base(&[NEG_ONE, POS_ONE], NEG_INFINITY, 1.0); } #[test] fn zero_as_base() { // Positive Zero as the base: // (+0 ^ anything positive but 0 and NAN should be +0) test_sets_as_exponent(0.0, &POS[1..], 0.0); // (+0 ^ anything negative but 0 and NAN should be Infinity) // (this should panic because we're dividing by zero) test_sets_as_exponent(0.0, &NEG[1..], INFINITY); // Negative Zero as the base: // (-0 ^ anything positive but 0, NAN, and odd ints should be +0) test_sets_as_exponent(-0.0, &POS[3..], 0.0); // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity) // (should panic because of divide by zero) test_sets_as_exponent(-0.0, &NEG[3..], INFINITY); // (-0 ^ positive odd ints should be -0) test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0); // (-0 ^ negative odd ints should be -Infinity) // (should panic because of divide by zero) test_sets_as_exponent(-0.0, &[NEG_ODDS], NEG_INFINITY); } #[test] fn special_cases() { // One as the exponent: // (anything ^ 1 should be anything - i.e. the base) test_sets(ALL, &|v: f64| pow(v, 1.0), &|v: f64| v); // Negative One as the exponent: // (anything ^ -1 should be 1/anything) test_sets(ALL, &|v: f64| pow(v, -1.0), &|v: f64| 1.0 / v); // Factoring -1 out: // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ integer)) (&[POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS]) .iter() .for_each(|int_set| { int_set.iter().for_each(|int| { test_sets(ALL, &|v: f64| pow(-v, *int), &|v: f64| { pow(-1.0, *int) * pow(v, *int) }); }) }); // Negative base (imaginary results): // (-anything except 0 and Infinity ^ non-integer should be NAN) (&NEG[1..(NEG.len() - 1)]).iter().for_each(|set| { set.iter().for_each(|val| { test_sets(&ALL[3..7], &|v: f64| pow(*val, v), &|_| NAN); }) }); } #[test] fn normal_cases() { assert_eq!(pow(2.0, 20.0), (1 << 20) as f64); assert_eq!(pow(-1.0, 9.0), -1.0); assert!(pow(-1.0, 2.2).is_nan()); assert!(pow(-1.0, -1.14).is_nan()); } }